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Chapter 1

Stochastic integral

1.1 Quadratic variation

Definition 1.1.1. A continuous martingale X = {X; : t > 0} (w.r.t F;) is square-integrable
if for any ¢ > 0,
E(X?) < oco.

Let My denote the space of all square-integrable, P-almost surely continuous martingales

with Xy = 0.

Definition 1.1.2. If X € My, then X2 = {X? : t > 0} is a non-negative submartingale, thus
by Doob-Meyer decomposition theorem, there is a unique adapted, predictable increasing
process Ag, s.t. Ag = 0 a.s. and X? — A; is a martingale. We call such A; the quadratic
variation of X, denoted as [X](¢).

Remark. 1.Ignoring the detailed proof, the continuity of X implies the continuity of [X](¢).
2. For any a € R, [aX](t) = a®[X](t).

3. The reason that we call it quadratic variation can be seen in Theorem 1.1.5.
Example 1.1.3. Let B = {B;:t > 0} be a BM, then B € M, since

E(B?) =t < co.
And we can show B? —t is a martingale, thus the quadratic variation of B is [B](t) = t.

Definition 1.1.4. Let X,Y € Mo, define their covariation (or called cross-variation) [X,Y]
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XY= (X 4]~ [X V)

Remark. 1. The definition is an analog of the polarization identity.
2. [, X](t) = [X].

Theorem 1.1.5. Suppose X € Mo, 11 is a partition of [0,t], then as |II| — 0,

Vt(Q)(H) = V(X 11,[0,4]) — [X](t), in probability.

Lemma 1.1.6. Suppose X € My satisfies

sup |Xs| < K < o0, a.s.,
s€0,t]

and Il ={0=tyg <ty <--- <ty =t} is a partition of [0,t], then

E[(v,” (11))?] < 652,

Proof. By definition,

n—1
v =3 X, - Xl
k=0
SO
n—1 2
2
E[(;P ()% = E ( Xty — Xt,f)
k=0
n—1 n—2 n—1
= E [lth-H - th’ﬂ +2 E |:|th+1 - thPIthH - th|2} :
k=0 §=0 k=j+1
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By the properties of martingales,

n—2 n—1 n—2 n—1 r 17
2 2 2 2
E UthH - th‘ ‘thﬂ - th’ } = EE |:|th+1 - thl ’thﬁ—l - th’ ‘EHl
=0 k=j+1 Jj=0k=j5+1 * T
n—2 n—1 r 717
2 2
= Z E ’th+1 - th| E l’thJrl - th| ‘Ftﬁl
j=0k=j+1 L .
n—2 n—1
2 2
= E |th+1 - th| Z E [|th+1 — Xy, | “Ftwl}
=0 k=j+1

Notice that for fixed j,

n—1

Z E |:’th+1 th J+1] Z E Xt2k+1 + XtZk - 2thth+1 }—tjﬂ]
k=j+1 —j+1 -
_ Z E|XZ,, + X7 —2E X, Xy | F] [Pty
k—j+1 : -
Z E Xt2k+1 + XtQk - 2th]E [th+l|‘Ftk:| ‘th+1
_]+1 L .
= Z E Xt2k+1 + XtQ/c - 2X152k thﬂ]
k=j+1 L
= E[X% - X]2+1|thj+1] < E[X7%|ftj+1] < KQ'
therefore
n—2 n—1 n—2
Y E[1Xy,, — X P X, — X ] < K2 CE[1X,,, - Xy |7 < K
J=0 k=j+1 j=0
where
n—2 n—2
ZE [|th+1 - thlz} - ZE lE bthﬂ - th|2‘}—t0 < K
7=0 7=0
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And we also have

n—1

n—1
kZ:OE [|th+1 - th|4} < ZE logrilgf_lﬂthﬂ - th|2} ’ |th+1 - th|2

n—1

= max {|th+1 th|2} ZE |:|th+1 - th|2}
0<k<n —o
n—1
< AK? ZE [lth+1 - th’ﬂ
k=0
< 4K

where

2
0<1"kn<ax (| Xty — X, |2} < <I]£1<ax {2th+1 —|—2th} < A4AK*=.

Combining together, we have

E[(V;® (1)) < 4K* + 2K* = 6K, 0

Lemma 1.1.7. Suppose X € My satisfies

sup | Xs| < K <00, a.s.
s€[0,t]

For partitions 11 of [0,t], we have

lim E[v,Y 1] = o.
o [V ()] =0

Proof. For the partition I1 ={0 =1ty <t <--- <t, =t}, we have

n—1

Z |th+1 Xt’“ 0<:(I£l<aX {|th+l th|2} kz—% |th+1 o th’2
’ (2)

8
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so by Cauchy-Schwarz and Lemma 1.1.6

2
EV, ()] = E ( max {1, - thu) v )

0<k<n

E (P m)]

4
< E [(OJE?X 'H)Qk+1 AQJ})

4
S VQﬂ(Q E ( max {LXM+1 XEA}> :

0<k<n

Claim:As |II| — 0,
E

4
(2 (%0, = X)) ] -0

Since X is uniformly continuous on [0, ¢] a.s., then

\H|%O
0<1]£1<ax {‘th-s-l th’} a.s.
And
0<I]I€1<ax {’thﬂ th|} < 4K2>
then bounded convergence theorem implies that the claim holds. [

Proof of Theorem 1.1.5. We will prove a special case: suppose supcp 4 |Xs| < K < 00 ass..
Then
E([X]s) = E[X?] < K? <00, Vsel0,t].

For any partition T ={0 =1ty <t} < --- < t, =t}, we have

=Y E@)+2 Y. Elgw),

where a; = |th+1 — th|2 - ([X]tkﬂ — [Xt,)-
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Ifj < k, then tj < tj-H <t <41,

E(ajar) = E(E(ajar|Ft,)) = E(a;E(ag]F,)),

in which
Blonk7i) = & 1Xis = X0 = (¥, = X0 |
“E[XE,, 4 X~ 20X~ (X — Y]]
“E[XE, 4 XE ~ X0 ) - (X, — X[
~ X2+ X~ 2XE — (Xl — (X))

=E (X}, — [X]tpr) — (X7 — [X]0)

7 -

the last equality holds because X2—[X], is a martingale by definition. Therefore E(a;ax) = 0.
Then

E l(Vt(Z)(H) - [X]t) 2] = E [(|th+1 - th|2 - ([X]tk+1 - [X]tk>)2]
k=0
n—1
<2 K [|th+1 th|4 + ([X]thrl [X]tk)2i|
k=0
= 2BV, ()] + 23 E [([Xe,, — [X]0)?]
k=0
n—1
< B+ 2 308 (W — k) g (XD, — X))
k=0 - -

(since [X]s is increasing)

= E[V;(Zl)(ﬂ)] +2 max {[ Xy, — [X].} - E(X])

0<k<n-—1

<EVOm)] + 257 max {[X]y,, — [X]p ) =0, as 1] =0

10
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because E[V;(ZL)(H)] — 0 by Lemma 1.1.7 and

max {[X]

— X
pLpax (X]uy =0

tk+1
by the uniform continuity of [X]s on [0,¢]. Therefore we have shown
VA — [X] in L2,

hence also in probability.

1.2 Definition and properties of It6 integral

Definition 1.2.1. Let {B; : t > 0} be a Brownian motion (BM) defined on (Q, F,P), and
let {F; :t > 0} be a filtration s.t. B; adapts to it. Fix 7" > 0.

(1) Define the space of adapted processes by

L% = L£4([0,T)xQ) = {X (0,77 x Q%R‘E

T
/ |X5(w)\2ds] < 00, X(t,w) € Fy, Vt},
0

and define the space of simple adapted processes by

n—1

L0 =Loo([0.T] x Q) = {X € L3 Xo(w) = co(w) Loy (s) + D er(w) Lty py1(5):
k=0

for some partition 0 =ty <t1 < --- <t, =T,

and ¢ € Fy, forall()gkgn—l}.

(2) Define the norm on £% by

T 1/2
/ |Xs<w>|2ds]> ,
0

then (£7, |- r2) is a Banach space. £124’0 is its linear subspace.

X1l s = (E

11
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(3) For any t € [0, 7], define
L? = L}, Fi,P) = {X : Q = R|E(|X;]?) < o0},

the L? norm is
1X 12 = [E(X )2

(L2, [[I2) is also Banach.

(4) For any 0 < ¢t < T, define the operator (It6 integral for simple adapted processes)
I : L3 — L7 by

t n—1
I(X)(w) = /O X5dBs = > cr(w)(Binty, (@) = Bia (W), VX € L,

k=0
in particular,
T n—1
B0 = [ XedBo= Y ) (Bron @) - Bule)). WX € L
0 k=0

Proposition 1.2.2 (Properties of It6 integral for simple adapted processes). Let I : 5124 0=
L? be the Ito integral. Then for any X,Y € 5?4 0

(1) I(aX + BY) = aly(X) + BL(Y) for all a, p € R.

(2) 1t6 isometry: [[I(X)| g2 = [ Xz, -

(3) t = I(X)(w) is continuous for almost all w € Q.

(4) {I(X) : t > 0} is a martingale and hence E(I;(X)) = E(lp(X)) =0

Proof. (1) Clear.

In the following arguments, suppose

n—1

Xs(w) = co(w) oy (s) + Z (W) Lty 1) (5)-
k=0

12
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(2)Let t =T,
n—1 2
“IT( HL2 = ch Btk+1 w) — Btk(w))>
n—1n-1
= Z E [Cjck(BtJ+1 - Btj)(Btk+1 - Btk)j|
j=0 k=0
n—1
= ZE [C%(Btk+1 - Btk)Q]
k=0
n—1
= E(Cz)E [(Btk+1 - Btk)Q}
k=0
n—1
= E(ci)(th1 — ti)
k=0
— X2 .
in the third “ =7, we cancel the non-diagonal terms because if j < k,

E [Cjck(Btj+1 - Btj)(BtlH—l - Btk)} =E [E lcjck(Btj+1 - Btj)(Btk+l - Btk)

dl
)

— By,)| E (By,,, — By,) = 0.

-F [Cjck(Btj+1 — By,)E (Btk+1 — By,

=K [Cjck(Bt

i1
(3) Since w.p.1., t — Bi(w) is continuous, then By, is continuous. The sum of continuous

functions is still continuous.

(4) First, by Itd isometry, we have

E[|I;(X l/ |X|2d31 < 00,

so I;(X) € L? and hence in L'. Second, suppose 0 < s < ¢, we want to show

E[It(X)U:s] = IS(X)'

13
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1

Elcr(w) (B (W) = By (w)) | Fsl.
0

We can assume ¢t =T, then

i
L

E[L(X)[Fs] = E | p_ cr(w)(Btyy, (w) — By (w))
0

3
I
B
Il

e
Il

There are three cases:

i) tg41 < s, then ¢y, By, By, € Fs,
E[Ck<Btk+1 - Btk)’FS] = Ck(Btk+1 - Btk)
ii) tr < s <tpy1, then ¢ € Fy, C Fg,

Elek(Btyir — Bu)|Fs] = ckE[(Byy.,, — Be,)|Fs]
= ckE[(Bryyy — Bs)|Fs| + cE[(Bs — By, )| F]
= c;E[By,,, — Bs] + ci(Bs — By,)
= cx(Bs — By,)

iii) s < tg, then

E[Ck(BtkH - Btk)|f3] - E[E[Ck<Btk+1 - Btk)lftk”]:«‘i] - ]E[CkE[Btk+1 - BtkH]:S] = 0.

Therefore
n—1 n—1
]E[It(X)|-FS] = ZE[Ck(Bthrl - Btk)|]:8] = ch(‘Btk+l/\5 - Btk/\s) = ]S(X)'
k=0 k=0

Lemma 1.2.3. 5?470 is dense in Ei, i.e. forany X € 5124, there is a sequence { X, }5° ; C 512470
s.t.

T 1/2
. _ 1 _ ) _
nh—>nc}oHXn Xl gz, nh_{glo (E [/0 | Xn(s) — X (s)] ds]) 0.

Theorem 1.2.4 (It6 integral for X € Ei). For any X € Ei, by Lemma 1.2.3, there is

14
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sequence X, € Cio s.t.
n11_>rr010 [ Xn — Xl g2 = 0.

Then for any fived t € [0,T), there is an I;(X) € L? s.t.

lim H[t<X) — It(Xn)HL? =0.

n—oo

Moreover, I;(X) is unique, i.e. independent of the choice of X,. We call I;(X) the Ito
integral for X € L%, denoted as
t
:/ Xs(w)dBs(w).
0

Proof. Since X,, — X in £2, it is a Cauchy sequence, i.e. for any ¢ > 0, there is N > 0, s.t.
for all m,n > Ny,
[ Xm — Xn”ﬁi <E.

By It6 isometry for simple adapted processes,
116(Xm) = L(Xn)ll 2 = [[1(Xin — X)) 2 = ([ Xom — Xn”ﬁi <¢,

ie. {I(X,)}°°, is a Cauchy sequence in L2 Since L? is complete, there is I;(X) € L? s.t.
Ii(X,) — I(X) in L2

Uniqueness. Suppose another sequence of simple adapted processes X, — X in Ei. Let
I[(X) € L? s.t.

H-[t<X7/’L) X)HL2 — 0.
Then
HXn - X7/LH[% S HXn - XHL% + HX - X1/1H[34 — 07
by It6 isometry,
[7:(Xn) = T(X0) | 2 = [ 1e(Xn = X0)[| 1o = | X0 = X3| oz, — 0.
Therefore
[ 1:(X M e < M(X) = LX)l 2 + || T(Xn) = L(X3)|| 2 + | 1(X5) )12 =0,

15
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i.e. I;(X) = I}(X) almost surely (for almost all w € Q). O

Remark. 1. For each t € [0,T], the sequence I;(X,) converges in L? to a limit I;, which
is unique up to almost sure equivalence. The family {I;(w) : t € [0,T]} defines a stochastic
process.

2. This process may admit different modifications (or called version). That is, if {Ij(w) : t €

(0,71} is another process such that for each ¢,
P([é # [t) =0,

then {I]} is a modification of {I;}.

3. Let L?, denote the space of equivalence classes of stochastic processes under modification
(i.e., processes that agree almost surely at each time). Then the Itd integral defines an
operator

[:L%— 1%, X I(X)(tw), VXcCL3.

Proposition 1.2.5 (Properties of 1t6 integral for adapted processes). Let I : [,i — L2, be
the Ito integral. Then for any X,Y € L%,

(1) Li(aX 4+ BY) = aly(X) + BI(Y) for all o, B € R.
(2) Ito isometry: || Li(X)||;2 = HX”L?M-

(3) There is a modification I;(X) of I;(X) s.t. t — I;(X)(w) is continuous for almost all
w e Q.

(4) {I(X) : t > 0} is a martingale and hence E(I;(X)) = E(lp(X)) =0

Proof. (1)It’s clear by approximation. (2) Suppose X,, € £2A70 converges to X in £%-norm,

then by Theorem 1.2.4 and It6 isometry for simple adapted processes,
16Ol = lim (X0 2 = lim Xl = X

(3) Step 0. For any X, t — I;(X,)(w) is continuous a.s., we will show that for each path
w, there is a subsequence I;(Xp,,)(w) — [;(X)(w) uniformly, then by Weierstrass uniform

convergence theorem, ¢ — [;(X)(w) is continuous. Therefore we want to show {I;(X,)}>°,

16
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is Cauchy w.r.t. the norm

[RA[PS ZSIiplf(t)l-

Step 1. For any m,n € Z4, since It(X,,) — (X)) = Li(X,, — X,,) is a martingale w.r.t. Fy,
[1;(Xn) — I(X,)|? is a submartingale, then by Doob’s maximal inequality, for any &k € Z,,

1
P( sup |[L(Xm) — L(Xn)| > = | <2%E [|L(Xm) — LX) P] = 2%% | X — Xul 72
0<t<T 2k %0
Step 2. Since we assume X,, — X in £%, {X,,}°°, is Cauchy w.r.t. the norm H'Hﬁio’ then

by definition, for any k, we can find N € Z, s.t. for all m,n > N,

1

2
||Xm - Xn||£?4’0 S ﬁa

then

P( sup |[[((Xm)— (Xn)] > 7 <o =o.
0<t<T

In particular,

1 1
(s 150V~ G| 2 o) < g1
0<t<T

By Borel-Cantelli lemma, since

- 1 =1
S P ( sup |1/(Xn,) — (X 1)] Q—k) <Y p=l<,
=1 \0<t<T

we have

1
P($mrMXM»—MXMHﬂz§;za)=m
0<t<T

i.e. there is kg € Z, for any k > ky,

1

P (s 150V~ G < ) =1
0<t<T

l.e.

1

11:0Xw) = 2(Xs)llo < 5

a.s.

Step 3. For any € > 0, let k1 be large enough s.t.

1

T <5

17
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let K = max{ko, k1}, then for any j > k > K,

26X n,) = T(Xn) || o, < 1 1(Xn,) = T( X, —0) || o+ - + (X vern) = (X)) oo
< 1 1 1
1 =1
< 27.(2 5
=0
< 1
S okt <g,

therefore the subsequence {I;(Xy,)}72, is Cauchy a.s., hence its limit
lim I,(Xy,)
k—o0

is continuous a.s.
Step 4. Show limy_, [;(Xp,) is a continuous version of I;(X).
Since for each ¢, I;(X,) — I;(X) in L?, hence also in probability, any a.s. convergent

subsequence must have the same limit [;(X), therefore

lim [(Xy) = I(X) Vte[0.T] as.
—00

Then
ts lim L(Xy,)
k—o0
is a continuous version of {[;(X) : t € [0,T]}. O

Corollary 1.2.6 (Quadratic variation). Let X € £%, then the quadratic variation of I;(X)
18

t
(X](t) = ‘lli|m0 VA(I(X),[0,t],T) = / X%(w)ds, in probability.
- 0

Proof. Suppose I' = {0 =ty <t; <--- <t, =t}, then

n—1
v2(1t<X)7 [07t]7 F) = Z |]tk+1 (X) - ]tk(X)|2
k=0

18
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2 tet1
=F ( X2 ds) :
tr

E[V2(I;(X),[0,4],T)] = E </Ot X2 ds> ,

By I1t06 isometry, we have

tr+1

E (|, (X) — I, (X)]?) =E ( X, dB,

tr

SO

therefore as |I'| — 0,

t
V(I(X),[0,t],T) — / X2%ds, in LY
0
hence also in probability. ]

Corollary 1.2.7. For any X € L,

t
76 - (X)) = 1200 - | XZas
0
is a martingale, i.e. for any 0 < s <'t,

E [L?(X) X))

fs] — 12(X) — [X](9).

Proof. Direct from the definition of quadratic variation (1.1.5). O

1.3 1It0 formula

Theorem 1.3.1 (It formula). If f: R — R € C2, then w.p.1.,

F(By) — F(By) = /f dB+/f”

Proof. Fix partition I' = {0 =ty < t; < --- < t, =t}, then

i
L

f(Bt) - f(BO) = [f(Btk+1 - f(Btk))]

0

=~
I

Claim. As |I'| — 0,

n—

1 t
[f(Btk+1 - Btk — / f dB + 5 / f//(Bs) ds
0

k=0

19
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in probability.
Remark: this claim implies [t6 formula. If we know X = X,, — X in probability as n — oo,

then for any ¢ > 0,
P(|X — Xoo| > €) = lim P(|X,, — Xoo| > €) =0,
n—oo
thus

)= lim P(|X - Xo| <

=X 1 1
P(X = Xoo) = P() X = Xoo| € ) = lim_ ~)=1
m=1

Proof of the Claim. We will prove a weak version, i.e. suppose
SUE(U(I“)I +1f'(2)]) < o0.
re

By Taylor’s theorem,

n—l n—1 n—1
> (B = F(Bu))] = > ' (Bu) By, — By) + % > F"(z)(Bry,, — Bu)? = S1+ %
k=0 k=0 k=0

for some z(w) between By, (w) and By, (w).

We will show as |I'| — 0,

t t
Sy — / f'(Bs)dBs = L,(f'(B)), S2— / f"(Bs)ds, in probability.
0 0

(1) For Sy, we will show Sy — I;(f'(B)) in L? hence in probability. Let

n—1

Xo(@) = 3 F (B @)L 1011 (9):

k=0

20
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then X € 5?470 and S1 = I;(X). By Ito isometry,

E[|S1 — L(f'(B))I’] = E[lL(X — f'(B))]’] = /0 E[| X, — f'(Bs)]*] ds

1 trt1
— E[ )| d
Z/tk 1/ (Bo) — 1'(Bo)P)ds

n—1 thit
/ E[|f'(c)]?| B, — Bs|?] ds (by the mean value theorem)
k=0t

n—1 thot
§M2Z/ (s —tp)ds
12

k=0
M2 n—1
=5 2 (e — t)?
k=0
< M?t|T|
— 0, as |I'| = 0
(2)For S, we have
n—1 n—1
S = Z f//(Btk)(Bthrl - Btk)Z + Z[f//(zk’) - f//(Btk)](Btk+1 - Btk)2 = S3 + Su,
k=0 k=0
For 53,
n—1 n—1
S3 =Y " (Bu)(teyr — k) + > [ (Be)(Boy, — Bi)® = (ks — )] = S5 + Se.
k=0

The Riemann sum

t
lim 55:/ f"(Bs)ds, a.s.
IT|=0 0

and Sg — 0 in L? by computing E[SZ].

21
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n—1 2
E[Sg] =E ( f// Btk Bthrl Btk)2 - (tk‘-i-l - tk)]) ]
k=0
nfl n—1
=k Z f Btk)[(Btj+1 - Bt]) (tJJFl )H(Btk-H Btk)z - (tk—|—1 - tk)]]
=0 k=0
n—1n—1
- Z E [f”(Btj>fH(Btk)[(ij+1 o Btj)2 - (tJJrl o tj)][(Btk-H - Btk)z - (tk+1 - tk:)”
7=0 k=0

For the case j # k, e.g. j <k, we have t; < tj, so conditioning on F3,,

E [f"(Bi,) " (B (Bt — Bty)? — (tj41 — t)][(Biyry — Br)? — (tes1 — ti)]]

=E |E [f”(Bt]-)f"(Btk)[(Btm Bi,)? = (tj1 — t)[(Bry, — B)* = (trs1 — )]

)
g

f//(Btj)fH(Btk)[(Bth - Btj> t]+1 - t] [ Btk+1 Btk (tk-i-l - tk)]“
F'(Be) f" (Be)(Btyyy — Bt,)? = (tis1 — )] E [[(Bry, — B)* = (trs1 — te)]]

=K [f”(BtJ)f”(Btk)[(BtM By,)? = (tj1 — t)E |[(Bey, — Be)® — (te1 — tn)]

so only the term j = k remains in the sum, i.e.

n—1
E[S§] =Y E[If"(Bu)Pl(Bte,, — Bt)* — (trar — te))’]
k=0

n—1

< O E[[(Bisr — Bu)® = (ti1 — 1))°] (assume |f"| < C)

k=
n—1 2
By, — By,)?
= (C? Z(tk-i—l —t)°E (( Zk“ ttk) — 1)
— k+1 — Uk

n—1

= C*E[|¢* — 1] Ztk—i-l_tk (€ ~N(0,1))
k=

—CPE[E2 1] [T}t >0 as|T| = 0.

For Sy, since B; is continuous w.p.1., there is ry, € [ty, ty41] s.t. B, is between By, and By,
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thus
n—1
|S4| < Z |f//(B7“k) - f”(Btk)|(Btk+1 - Btk)Q < VQ(B> L, [Ovt]) ’ ml?X |f”(BTk) - f//(Btk)|‘
k=0

By the uniform continuity of s — f”(B;s) on [0, ],
I "(By) — f"(By)| =0, a.s.
|F1|13>10ml?x|f (Br) — f7(By)] ,  @.S
and by the quadratic variation of BM,

V3(B,T,[0,]) =t in L?

Since convergence a.s. and in L? both imply convergence in probability, and convergence in

probability is linear, so S4 — 0 in probability. ]

Remark. 1. For simplicity, we sometimes denote the formula as
1
df(B;) = f/(By) dB; + §f”(Bt) dt.

Example 1.3.2. By It6 formula, let f = 22/2 we have

—t _ :/ Bsst+—/ ds,
2 0 2 )y
therefore . )
B t
B,dBs = =L — —.
/O S S 2 2

Theorem 1.3.3. Suppose f(t,x):[0,00) x R =R € CY2, then w.p.1.

b0 92 )
o) - 050 = [ |9+ 10 mase [ S ma.

Corollary 1.3.4. If f(t,x) is a polynomial in t,z with

of 10°%f

ot T2o2 =0

then f(t, By) is a martingale and E[f(t, B:)] = f(0, By).
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Proof. By Theorem 1.3.3,

f(tuBt)_f(()?BO):/ %

| o (s, Bs) dBs.

We want to show

= [ o] < [ e ||

Since f(t,x) is a polynomial, we can write

2
g(‘ngS)

o ds < oo,

2

s =3 el < OO+ B
=0 7=0
and
of 2
- [|a_< By)| | <E[COL+s™)(1+ B = C(1+s™)(1+E(BY) < C(1+s™)(1+Crs™?),

then its integral is finite. Therefore

t
of
/0 a—$(8, Bs) dBS

is an Ito integral, hence a martingale. [

Example 1.3.5. Let a € R, define
[
Xt = Xoexp(aBy — e t).

Let f(t,z) = Xoexp(ax — 3a%t)

B [of  18%f af
dXS = df(BS7S) = |\5 + §W:| (S,BS) ds + 8_1‘(8’38) st
o? 1 5
= (—7X3 + 5 X;)ds + aX;dBs
= aX,dBs.

Therefore X; defined above satisfies the stochastic differential equation (SDE)

dXt = OéXt dBt, X(O) = X().
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1.4 1It6 formula for It6 processes

Definition 1.4.1. Let F; be the filtration s.t. B; adapted to it. Suppose p(s,w) and o(s,w)

are adapted processes w.r.t. F; and satisfy the usual condition:

t t
IP(/ Mds<oo>:1, IP’(/ ]J|2ds<oo>:1.
0 0

We call Z(t,w) (or Z;(w)) an It process if it is defined by

t t
Z(t,w):Z(O,w)—i—/O ,u(s,w)ds—i—/o o(s,w)dBs,

and we denote it as
dZ = pdt + o dB.

s is called the drift term and oy is the diffusion coefficient.

Remark. The quadratic variation for Z; is

[Z,Z](t):/o o2 ds.

Theorem 1.4.2. Suppose f € C? and Z; is an Ité process, then w.p.1.
t t 1t
1) - £z = [ Fzgmdss [ fzas g [ Fzactas
0 0 0

Theorem 1.4.3. Suppose f(t,z) : [0,00) x R — R € CY? and Z; is an Ité process. Then

w.p.1.
t 2 t
of of 1 ,0°f / of
Zt) — Zy) = . Zs s 7Zs 5Y%s 9 9 7Zs s 7Zs Bs.

0.2 - 50,20 = [ | B2+ m3l 20+ 325 40 20| st [ o852
Example 1.4.4 (Ornstein-Unlenbeck process). Let a, o > 0, define the Ornstein-Unlenbeck
process by

t

Xy :Xoe_o‘t+a/ e—(=9) 4 B,.

0

Let

t
Zt:/ eo‘sst,
0
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and f(t,7) = Xoe~™ + oe "z, then X; = f(t, Z;). By the Ito formula,

af 1 2a382f asaf
dX, = 8t(  Zs) + 3¢ B —5(8,Zs)| ds+e ax(S’Z‘S)dBS
of

- E(S’ Zs)ds + e*Poe”** dBs

= —aXpe ¥+ —ace” 7, + 0 dB;
= —aX,ds + odBs.

Therefore, X; defined above satisfies the SDE

dX; = —aX;dt+odB,  X(0) = X,.

1.5 Multi-dimensional Ito formula

Definition 1.5.1. B(t) = (BW(t),BA(t),---, B (t)) is called a d-dimensional BM if
{B ) (t ) *_, are independent 1-d BM. Define the Brownian filtration by

FP =o(BY(s),1<i<d0<s<t).

Theorem 1.5.2. For d-dimensional BM B = (BY ... B@®) let f € C*(R%R), then
d t 2
1 o°f
f(Bt) — f(Bo) = § / az, ) dB + 3 ;_1/0 92 (By)ds.

Example 1.5.3. Let d > 2, for d-dimensional BM B = (B(l), e ,B(d)), define

d 1/2
1By| = (Z(Bé‘”)?) .

k=1

Let f(21,-- ,2a) = (22 + -+ + 22)1/2, then |By| = f(By). Since,
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by It6’s formula, we have

£ B{
I8y = 18] = Z/f / Py
df*(B,) — 34 (B’
/ (B / 3(B,) s

:2/0 f?i) /f_l

i.e. |Bs| is the solution to the SDE

(i
BY 4 d—1
dx, = < dB” + x
=1
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Chapter 2

Applications

2.1 Exit time and exit distribution for diffusion processes

2.1.1 1-dimension

Let (I,7) be an open real interval, consider the following 1-dimensional diffusion process:
dX; = U(Xt) dt + O'(Xt) dB;
Xo=z€ (l, T).

Define the operator
o*(x)

Lf(@) = T2 1" @) + o(@) ().

Theorem 2.1.1. Let [a,b] C (I,r), suppose the diffusion starts at Xg = x € [a,b]. Let

7=inf{t > 0: X; ¢ [a,0]}.

Then the unique solution p(z) to the ODE

Lp(z) = -1
p(a) =p(b) =0
satisfies
p(x) = Eqy(7)
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Proof. Apply 1t6’s formula to p(X;) on [0, 7], then we have
TAE TAE
p(XT/\t) = p(Xo) + / p/(Xs)U(Xs) st + / £p(Xs> ds
0 0

TN
= p(z) + / P (Xs)o(Xs)dBs — 1 At,
0

Let t — oo, we have

Define u : (I,r) — R by

u(x) = /ﬂ: exp <—2 /:v(r)/ch(r) dr) dy,

where g € (I,r) is an arbitrary point, then u is the solution to the ODE:

Lu(z) =0,
u(zg) =0
u'(zg) > 0.

For any [a,b] C (I,7), define

~ ul®) —u(a)’
then h is the solution to the ODE for all x € [a, b],

Lh(z) =0,
h(a) =0
h(b) =1

Define
T,=nf{t >0: Xy =a}, m=inf{t >0:X; =0b}.

Then we have the following result.

Theorem 2.1.2. P, (X; =a) =Py(1, < 7)) = 1—h(z) and Pr(X; =) = Py(1, < 74) = h(x).
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Proof. Apply 1t6’s formula to u(X;) on [0, 7], then we have
TNt TNt
u(Xrat) = u(Xo) + / u'(Xs)o(Xs)dBs + / Lu(Xs)ds
0 0

TAL
=u(r) + /0 u'(Xs)o(Xs)dBs,

then
Elu(Xrat)] = u(x).

Let t — oo, we have

Since 1 = P, (X, = a) + P, (X; = b), we have

u(b) — u(x)
w(b) — u(a)’

Example 2.1.3. Let D = [0, R] for some R > 0. Consider the diffusion process

dXt = Udt+ dBt
Xo=x € [O, R],

where v € R\ {0} is a constant.
(1) For the exit time, solving the ODE

Lp(z) = =" (z) + vp(z) = -1

2
p(0) = p(R) =0,
we have P
— 1
]Ex(TD) = p(l’) = m (e*ZUm _ 1) _ ;l’

(2) For the exit distribution, we have

x Y T 6721@ 1
u(x)z/o exp (—2/0 vdr) dy:/0 e 2 dy = — 50 +%,
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then we have

1 6—21)35
h(l‘) = 1— e—QvR’
therefore
6—211;10 e—QvR
Py(ro <7r)=1-h(z) = T _ 20k

let R — oo, we have

P, (10 < 00) = e~ 2%,

In other words, as the starting point increases, the probability that X; reaches 0 decreases

exponentially.

2.1.2 d-dimension

Consider the d-dimensional diffusion process X;.

Theorem 2.1.4. Let D C R? be an open set, suppose X; starts at Xo =z € D, define
T=inf{t >0: X; ¢ D}.

Then the unique solution p(z) to the PDE

Lp(x)=-1, z€D
p(z) =0, x € 0D

satisfies

We can also calculate the exit distribution for some special cases, see the following exam-

ple.

Example 2.1.5. Let B; be a standard d-dimensional Brownian motion starting at = € R¢,

and let 0 < r < R. Define the open annulus domain
D:={zeR%: r<|z| <R}

Let 7 = inf{t > 0 : By ¢ D} be the first exit time from D. Consider the boundary value
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problem:
Lu(z) = %Au(x) =0, zeD,
u(z) =0, |z =,
u(z) =1, |z| = R.

Then the function u(z) gives the probability that Brownian motion starting at z exits the

domain D through the outer boundary |z| = R, i.e.,
u(z) = P(|Br| = R).
Consequently, the complementary probability is:
P.(|B;| =r) =1 — u(x).

Since the problem is radially symmetric, u(z) depends only on p = |z|. Let u(x) = v(p).
The PDE reduces to the ODE:

1 d—1
§<vll(p)+ ; v'(p))=07 r<p<R.

Solving this, we get:

e For d =2:

_ loglp/r)
log(R/7)

e For d > 3:

p2—d _ T2_d

v(p) = R2—d _ j2—d’

Therefore,
| log(lx|/r)
log(R/r)’
|$|27d _ T27d

d=2,
P.(|Br|=7r)=1—u(z) =

1 d > 3.

R2—d _ j2-d°
2.2 Lévy’s characterization of BM

Theorem 2.2.1 (Lévy). Let X; with Xo = 0 be a continuous martingale w.r.t. Fy. If
[ X]: =t, then Xy is a standard BM.
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Proof. Step 1. We only need to show for any 0 < s < ¢:

(1) X; — X is independent of Fg;

(2) Xt — X5 ~N(0,t — s).

Claim: The above two statements hold if and only if for any v € R,

E[eiu(Xt*Xs) 8] — e*'U'Q(t*S)/2. (21)

The “only if” part is obvious. We will show the “if” part. Suppose (2.1) holds, first

@ x,-x, (u) = B[ XmX)) = B[E[MXX)| 7)) = Bl (79)/2) = g7 (792

Y

by the property of the characteristic function, X; — X ~ N (0,t — s).
Second, by the definition of conditional expectation, for any A € Fg,

E[eiu(Xt—Xs)]lA] _ E[e—uz(t—s)/QﬂA] _ €—u2(t—s)/2P(A).
Then for any bounded r.v. Y € Fj, it can be approximated by simple r.v. Y,, € F, thus
]E[eiu(Xt—Xs)Y] _ 6—u2(t—s)/2]E(Y)7
For any B € F,, let Y = 12 we have

E[e’LU(Xt—Xg)e

inlB] _ e—uz(t—s)/QE(eiwlB), Vu,w € R,

thus Xy — X5 and 1p are independent for any B € Fj, i.e. X; — X, is independent of Fg.
Step 2. We will then prove (2.1) is true. Let f(z) = e™*, then

f/<513> _ Z-ueiux’ f”(SC) _ _u2€iux.

By It6’s formula,

eiuXt_ U é_f()(t /f dX + = /f//

:iu/ uX, dX, ——/ Xy qpe.
S 2 S

Since |e?Xr| = 1, ¢®Xt € £2 the first integral is a martingale by the property of It6 integral,

(2.2)
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thus

t
E l / e Xr 4 X,

Multiplying both sides of (2.2) by e~ X< and take conditional expectation, we have

7.

7] =0

2 t
E leiu(xt_xﬁ) —1 ']—"8] S ) [/ e UXr=Xs) qpr
2 S

Let
g(t) = Efe X=X

Fsl,

then applying Fubini’s theorem for conditional expectations, we have

u2 t
o) -1= -5 [ atr)an

i.e.
u2

g'(t) = —79(25), g(s) =1.

Solving the ODE, we get the unique solution

g(t) _ e—uQ(t—s)/2_ 0
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