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Chapter 1

Stochastic integral

1.1 Quadratic variation

Definition 1.1.1. A continuous martingale X = {Xt : t ≥ 0} (w.r.t Ft) is square-integrable
if for any t ≥ 0,

E(X2
t ) < ∞.

Let M2 denote the space of all square-integrable, P-almost surely continuous martingales
with X0 = 0.

Definition 1.1.2. If X ∈ M2, then X2 = {X2
t : t ≥ 0} is a non-negative submartingale, thus

by Doob-Meyer decomposition theorem, there is a unique adapted, predictable increasing
process At, s.t. A0 = 0 a.s. and X2 − At is a martingale. We call such At the quadratic
variation of X, denoted as [X](t).

Remark. 1.Ignoring the detailed proof, the continuity of X implies the continuity of [X](t).
2. For any a ∈ R, [aX](t) = a2[X](t).
3. The reason that we call it quadratic variation can be seen in Theorem 1.1.5.

Example 1.1.3. Let B = {Bt : t ≥ 0} be a BM, then B ∈ M2 since

E(B2
t ) = t < ∞.

And we can show B2
t − t is a martingale, thus the quadratic variation of B is [B](t) = t.

Definition 1.1.4. Let X,Y ∈ M2, define their covariation (or called cross-variation) [X,Y ]
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by
[X,Y ]t :=

1

4
([X + Y ]t − [X − Y ]t).

Remark. 1. The definition is an analog of the polarization identity.
2. [X,X ](t) = [X]t.

Theorem 1.1.5. Suppose X ∈ M2, Π is a partition of [0, t], then as |Π| → 0,

V
(2)
t (Π) := V (2)(X,Π, [0, t]) → [X](t), in probability.

Lemma 1.1.6. Suppose X ∈ M2 satisfies

sup
s∈[0,t]

|Xs| ≤ K < ∞, a.s.,

and Π = {0 = t0 < t1 < · · · < tn = t} is a partition of [0, t], then

E[(V (2)
t (Π))2] ≤ 6K2.

Proof. By definition,

V
(2)
t (Π) =

n−1∑
k=0

|Xtk+1 −Xtk |2,

so

E[(V (2)
t (Π))2] = E

(n−1∑
k=0

|Xtk+1 −Xtk |2
)2


=

n−1∑
k=0

E
[
|Xtk+1 −Xtk |4

]
+ 2

n−2∑
j=0

n−1∑
k=j+1

E
[
|Xtj+1 −Xtj |2|Xtk+1 −Xtk |2

]
.
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By the properties of martingales,

n−2∑
j=0

n−1∑
k=j+1

E
[
|Xtj+1 −Xtj |2|Xtk+1 −Xtk |2

]
=

n−2∑
j=0

n−1∑
k=j+1

E
[
E
[
|Xtj+1 −Xtj |2|Xtk+1 −Xtk |2

∣∣∣∣Ftj+1

]]

=

n−2∑
j=0

n−1∑
k=j+1

E
[
|Xtj+1 −Xtj |2E

[
|Xtk+1 −Xtk |2

∣∣∣∣Ftj+1

]]

=

n−2∑
j=0

E

|Xtj+1 −Xtj |2
n−1∑

k=j+1

E
[
|Xtk+1 −Xtk |2

∣∣∣∣Ftj+1

]
Notice that for fixed j,

n−1∑
k=j+1

E
[
|Xtk+1 −Xtk |2

∣∣∣∣Ftj+1

]
=

n−1∑
k=j+1

E
[
X2

tk+1
+X2

tk − 2XtkXtk+1

∣∣∣∣Ftj+1

]

=

n−1∑
k=j+1

E
[
X2

tk+1
+X2

tk − 2E
[
XtkXtk+1 |Ftk

] ∣∣∣∣Ftj+1

]

=

n−1∑
k=j+1

E
[
X2

tk+1
+X2

tk − 2XtkE
[
Xtk+1 |Ftk

] ∣∣∣∣Ftj+1

]

=

n−1∑
k=j+1

E
[
X2

tk+1
+X2

tk − 2X2
tk

∣∣∣∣Ftj+1

]
= E[X2

n −X2
j+1|Ftj+1 ] ≤ E[X2

n|Ftj+1 ] ≤ K2.

therefore
n−2∑
j=0

n−1∑
k=j+1

E
[
|Xtj+1 −Xtj |2|Xtk+1 −Xtk |2

]
≤ K2

n−2∑
j=0

E
[
|Xtj+1 −Xtj |2

]
≤ K4,

where
n−2∑
j=0

E
[
|Xtj+1 −Xtj |2

]
=

n−2∑
j=0

E
[
E
[
|Xtj+1 −Xtj |2

∣∣∣∣Ft0

]]
≤ K2.
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And we also have
n−1∑
k=0

E
[
|Xtk+1 −Xtk |4

]
≤

n−1∑
k=0

E
[

max
0≤k≤n−1

{|Xtk+1 −Xtk |2} · |Xtk+1 −Xtk |2
]

= max
0≤k≤n−1

{|Xtk+1 −Xtk |2}
n−1∑
k=0

E
[
|Xtk+1 −Xtk |2

]
≤ 4K2

n−1∑
k=0

E
[
|Xtk+1 −Xtk |2

]
≤ 4K4,

where
max

0≤k≤n−1
{|Xtk+1 −Xtk |2} ≤ max

0≤k≤n−1
{2X2

tk+1
+ 2X2

tk} ≤ 4K2.

Combining together, we have

E[(V (2)
t (Π))2] ≤ 4K4 + 2K4 = 6K4.

Lemma 1.1.7. Suppose X ∈ M2 satisfies

sup
s∈[0,t]

|Xs| ≤ K < ∞, a.s.

For partitions Π of [0, t], we have

lim
|Π|→0

E[V (4)
t (Π)] = 0.

Proof. For the partition Π = {0 = t0 < t1 < · · · < tn = t}, we have

V
(4)
t (Π) =

n−1∑
k=0

|Xtk+1 −Xtk |4 ≤ max
0≤k≤n−1

{|Xtk+1 −Xtk |2}
n−1∑
k=0

|Xtk+1 −Xtk |2

=

(
max

0≤k≤n−1
{|Xtk+1 −Xtk |}

)2

V
(2)
t (Π),
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so by Cauchy-Schwarz and Lemma 1.1.6

E[V (4)
t (Π)] = E

[(
max

0≤k≤n−1
{|Xtk+1 −Xtk |}

)2

V
(2)
t (Π)

]

≤

√√√√E

[(
max

0≤k≤n−1
{|Xtk+1 −Xtk |}

)4
]
E
[
(V

(2)
t (Π))2

]

≤
√
6K2

√√√√E

[(
max

0≤k≤n−1
{|Xtk+1 −Xtk |}

)4
]
.

Claim:As |Π| → 0,

E

[(
max

0≤k≤n−1
{|Xtk+1 −Xtk |}

)4
]
→ 0.

Since Xs is uniformly continuous on [0, t] a.s., then

max
0≤k≤n−1

{|Xtk+1 −Xtk |}
|Π|→0−→ 0, a.s.

And
max

0≤k≤n−1
{|Xtk+1 −Xtk |} ≤ 4K2,

then bounded convergence theorem implies that the claim holds.

Proof of Theorem 1.1.5. We will prove a special case: suppose sups∈[0,t] |Xs| ≤ K < ∞ a.s..
Then

E([X]s) = E[X2
s ] ≤ K2 < ∞, ∀s ∈ [0, t].

For any partition Π = {0 = t0 < t1 < · · · < tn = t}, we have

E
[(

V
(2)
t (Π)− [X]t

)2]
= E

(n−1∑
k=0

|Xk+1 −Xk|2 − ([X]tk+1 − [X]tk)

)2


=

n−1∑
k=0

E(a2k) + 2
∑

0≤j<k≤n−1

E(ajak),

where ak = |Xtk+1 −Xtk |2 − ([X]tk+1 − [X]tk).
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If j < k, then tj < tj+1 ≤ tk < tk+1,

E(ajak) = E(E(ajak|Ftk)) = E(ajE(ak|Ftk)),

in which

E(ak|Ftk) = E
[
|Xtk+1 −Xtk |2 − ([X]tk+1 − [X]tk)

∣∣∣∣Ftk

]
= E

[
X2

tk+1
+X2

tk − 2XtkXtk+1 − ([X]tk+1 − [X]tk)

∣∣∣∣Ftk

]
= E

[
X2

tk+1
+X2

tk − 2XtkE(Xtk+1 |Ftk)− ([X]tk+1 − [X]tk)

∣∣∣∣Ftk

]
= E

[
X2

tk+1
+X2

tk − 2X2
tk − ([X]tk+1 − [X]tk)

∣∣∣∣Ftk

]
= E

[
(X2

tk+1
− [X]tk+1)− (X2

tk − [X]tk)

∣∣∣∣Ftk

]
= 0,

the last equality holds because X2
s−[X]s is a martingale by definition. Therefore E(ajak) = 0.

Then

E
[(

V
(2)
t (Π)− [X]t

)2]
=

n−1∑
k=0

E
[(
|Xtk+1 −Xtk |2 − ([X]tk+1 − [X]tk)

)2]
≤ 2

n−1∑
k=0

E
[
|Xtk+1 −Xtk |4 + ([X]tk+1 − [X]tk)

2
]

= 2E[V (4)
t (Π)] + 2

n−1∑
k=0

E
[
([X]tk+1 − [X]tk)

2
]

≤ E[V (4)
t (Π)] + 2

n−1∑
k=0

E
[
([X]tk+1 − [X]tk) · max

0≤k≤n−1
{[X]tk+1 − [X]tk}

]
(since [X]s is increasing)

= E[V (4)
t (Π)] + 2 max

0≤k≤n−1
{[X]tk+1 − [X]tk} · E([X]t)

≤ E[V (4)
t (Π)] + 2K2 max

0≤k≤n−1
{[X]tk+1 − [X]tk} → 0, as |Π| → 0
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because E[V (4)
t (Π)] → 0 by Lemma 1.1.7 and

max
0≤k≤n−1

{[X]tk+1 − [X]tk} → 0

by the uniform continuity of [X]s on [0, t]. Therefore we have shown

V
(2)
t (Π) → [X]t in L2,

hence also in probability.

1.2 Definition and properties of Itô integral

Definition 1.2.1. Let {Bt : t ≥ 0} be a Brownian motion (BM) defined on (Ω,F ,P), and
let {Ft : t ≥ 0} be a filtration s.t. Bt adapts to it. Fix T > 0.

(1) Define the space of adapted processes by

L2
A = L2

A([0, T ]×Ω) =

{
X : [0, T ]× Ω → R

∣∣∣∣E
[∫ T

0

|Xs(ω)|2 ds
]
< ∞, X(t, ω) ∈ Ft, ∀t

}
,

and define the space of simple adapted processes by

L2
A,0 = L2

A,0([0, T ]× Ω) =

{
X ∈ L2

A : Xs(ω) = c0(ω)1{0}(s) +

n−1∑
k=0

ck(ω)1(tk,tk+1](s),

for some partition 0 = t0 < t1 < · · · < tn = T,

and ck ∈ Ftk for all 0 ≤ k ≤ n− 1

}
.

(2) Define the norm on L2
A by

‖X‖L2
A
=

(
E

[∫ T

0

|Xs(ω)|2 ds
])1/2

,

then (L2
A, ‖·‖L2

A
) is a Banach space. L2

A,0 is its linear subspace.
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(3) For any t ∈ [0, T ], define

L2
t = L2(Ω,Ft,P) = {X : Ω → R |E(|Xt|2) < ∞},

the L2
t norm is

‖X‖L2
t
= [E(|X|2)]1/2.

(L2
t , ‖·‖L2

t
) is also Banach.

(4) For any 0 ≤ t ≤ T , define the operator (Itô integral for simple adapted processes)
It : L2

A,0 → L2
t by

It(X)(ω) =

∫ t

0

Xs dBs =

n−1∑
k=0

ck(ω)(Bt∧tk+1(ω)− Bt∧tk(ω)), ∀X ∈ L2
A,0,

in particular,

IT (X)(ω) =

∫ T

0

Xs dBs =

n−1∑
k=0

ck(ω)(Btk+1(ω)− Btk(ω)), ∀X ∈ L2
A,0.

Proposition 1.2.2 (Properties of Itô integral for simple adapted processes). Let It : L2
A,0 →

L2
t be the Itô integral. Then for any X,Y ∈ L2

A,0,

(1) It(αX + βY ) = αIt(X) + βIt(Y ) for all α, β ∈ R.

(2) Itô isometry: ‖It(X)‖L2 = ‖X‖L2
A,0

.

(3) t 7→ It(X)(ω) is continuous for almost all ω ∈ Ω.

(4) {It(X) : t ≥ 0} is a martingale and hence E(It(X)) = E(I0(X)) = 0

Proof. (1) Clear.
In the following arguments, suppose

Xs(ω) = c0(ω)1{0}(s) +

n−1∑
k=0

ck(ω)1(tk,tk+1](s).
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(2)Let t = T ,

‖IT (X)‖2L2 = E

(n−1∑
k=0

ck(ω)(Btk+1(ω)− Btk(ω))

)2


=

n−1∑
j=0

n−1∑
k=0

E
[
cjck(Btj+1 − Btj)(Btk+1 − Btk)

]
=

n−1∑
k=0

E
[
c2k(Btk+1 − Btk)

2
]

=

n−1∑
k=0

E(c2k)E
[
(Btk+1 − Btk)

2
]

=

n−1∑
k=0

E(c2k)(tk+1 − tk)

= ‖X‖2L2
A,0

.

in the third ‘‘ = ”, we cancel the non-diagonal terms because if j < k,

E
[
cjck(Btj+1 − Btj)(Btk+1 − Btk)

]
= E

[
E
[
cjck(Btj+1 − Btj)(Btk+1 − Btk)

∣∣∣∣Fk

]]
= E

[
cjck(Btj+1 − Btj)E

(
Btk+1 − Btk

∣∣∣∣Fk

)]
= E

[
cjck(Btj+1 − Btj)

]
E
(
Btk+1 − Btk

)
= 0.

(3) Since w.p.1., t 7→ Bt(ω) is continuous, then Bt∧tk is continuous. The sum of continuous
functions is still continuous.
(4) First, by Itô isometry, we have

E[|It(X)|2] = E
[∫ t

0

|X|2 ds
]
< ∞,

so It(X) ∈ L2 and hence in L1. Second, suppose 0 ≤ s < t, we want to show

E[It(X)|Fs] = Is(X).

13



Notes Huarui Zhou MATH545

We can assume t = T , then

E[It(X)|Fs] = E

[
n−1∑
k=0

ck(ω)(Btk+1(ω)− Btk(ω))

∣∣∣∣Fs

]

=

n−1∑
k=0

E[ck(ω)(Btk+1(ω)− Btk(ω))|Fs].

There are three cases:
i) tk+1 ≤ s, then ck, Btk , Btk+1 ∈ Fs,

E[ck(Btk+1 − Btk)|Fs] = ck(Btk+1 − Btk)

ii) tk ≤ s < tk+1, then ck ∈ Ftk ⊆ Fs,

E[ck(Btk+1 − Btk)|Fs] = ckE[(Btk+1 − Btk)|Fs]

= ckE[(Btk+1 − Bs)|Fs] + ckE[(Bs − Btk)|Fs]

= ckE[Btk+1 − Bs] + ck(Bs − Btk)

= ck(Bs − Btk)

iii) s < tk, then

E[ck(Btk+1 − Btk)|Fs] = E[E[ck(Btk+1 − Btk)|Ftk ]|Fs] = E[ckE[Btk+1 − Btk ]|Fs] = 0.

Therefore

E[It(X)|Fs] =

n−1∑
k=0

E[ck(Btk+1 − Btk)|Fs] =

n−1∑
k=0

ck(Btk+1∧s − Btk∧s) = Is(X).

Lemma 1.2.3. L2
A,0 is dense in L2

A, i.e. for any X ∈ L2
A, there is a sequence {Xn}∞n=1 ⊆ L2

A,0

s.t.

lim
n→∞

‖Xn −X‖L2
A
= lim

n→∞

(
E

[∫ T

0

|Xn(s)−X(s)|2 ds
])1/2

= 0.

Theorem 1.2.4 (Itô integral for X ∈ L2
A). For any X ∈ L2

A, by Lemma 1.2.3, there is

14
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sequence Xn ∈ L2
A,0 s.t.

lim
n→∞

‖Xn −X‖L2
A
= 0.

Then for any fixed t ∈ [0, T ], there is an It(X) ∈ L2 s.t.

lim
n→∞

‖It(X)− It(Xn)‖L2 = 0.

Moreover, It(X) is unique, i.e. independent of the choice of Xn. We call It(X) the Itô
integral for X ∈ L2

A, denoted as

It(X)(ω) =

∫ t

0

Xs(ω)dBs(ω).

Proof. Since Xn → X in L2
A, it is a Cauchy sequence, i.e. for any ε > 0, there is N1 > 0, s.t.

for all m,n ≥ N1,
‖Xm −Xn‖L2

A
< ε.

By Itô isometry for simple adapted processes,

‖It(Xm)− It(Xn)‖L2 = ‖It(Xm −Xn)‖L2 = ‖Xm −Xn‖L2
A
< ε,

i.e. {It(Xn)}∞n=1 is a Cauchy sequence in L2. Since L2 is complete, there is It(X) ∈ L2 s.t.
It(Xn) → It(X) in L2.
Uniqueness. Suppose another sequence of simple adapted processes X ′

n → X in L2
A. Let

I ′t(X) ∈ L2 s.t. ∥∥It(X ′
n)− It(X)

∥∥
L2 → 0.

Then ∥∥Xn −X ′
n

∥∥
L2

A
≤ ‖Xn −X‖L2

A
+
∥∥X −X ′

n

∥∥
L2

A
→ 0,

by Itô isometry,∥∥It(Xn)− It(X
′
n)
∥∥
L2 =

∥∥It(Xn −X ′
n)
∥∥
L2 =

∥∥Xn −X ′
n

∥∥
L2

A
→ 0.

Therefore∥∥It(X)− I ′t(X)
∥∥
L2 ≤ ‖It(X)− It(Xn)‖L2 +

∥∥It(Xn)− It(X
′
n)
∥∥
L2 +

∥∥It(X ′
n)− I ′(X)

∥∥
L2 → 0,
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i.e. It(X) = I ′t(X) almost surely (for almost all ω ∈ Ω).

Remark. 1. For each t ∈ [0, T ], the sequence It(Xn) converges in L2 to a limit It, which
is unique up to almost sure equivalence. The family {It(ω) : t ∈ [0, T ]} defines a stochastic
process.
2. This process may admit different modifications (or called version). That is, if {I ′t(ω) : t ∈
[0, T ]} is another process such that for each t,

P(I ′t 6= It) = 0,

then {I ′t} is a modification of {It}.
3. Let L2

m denote the space of equivalence classes of stochastic processes under modification
(i.e., processes that agree almost surely at each time). Then the Itô integral defines an
operator

I : L2
A → L2

m, X 7→ I(X)(t, ω), ∀X ∈ L2
A.

Proposition 1.2.5 (Properties of Itô integral for adapted processes). Let I : L2
A → L2

m be
the Itô integral. Then for any X,Y ∈ L2

A,

(1) It(αX + βY ) = αIt(X) + βIt(Y ) for all α, β ∈ R.

(2) Itô isometry: ‖It(X)‖L2 = ‖X‖L2
A,0

.

(3) There is a modification Ĩt(X) of It(X) s.t. t 7→ Ĩt(X)(ω) is continuous for almost all
ω ∈ Ω.

(4) {It(X) : t ≥ 0} is a martingale and hence E(It(X)) = E(I0(X)) = 0

Proof. (1)It’s clear by approximation. (2) Suppose Xn ∈ L2
A,0 converges to X in L2

A-norm,
then by Theorem 1.2.4 and Itô isometry for simple adapted processes,

‖It(X)‖L2 = lim
n→∞

‖It(Xn)‖L2 = lim
n→∞

‖Xn‖L2
A
= ‖X‖L2

A
.

(3) Step 0. For any Xn, t 7→ It(Xn)(ω) is continuous a.s., we will show that for each path
ω, there is a subsequence It(Xnj)(ω) → It(X)(ω) uniformly, then by Weierstrass uniform
convergence theorem, t 7→ It(X)(ω) is continuous. Therefore we want to show {It(Xn)}∞n=1
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is Cauchy w.r.t. the norm
‖f‖∞ = sup

t
|f(t)|.

Step 1. For any m,n ∈ Z+, since It(Xm) − It(Xn) = It(Xm −Xn) is a martingale w.r.t. Ft,
|It(Xm)− It(Xn)|2 is a submartingale, then by Doob’s maximal inequality, for any k ∈ Z+,

P
(

sup
0≤t≤T

|It(Xm)− It(Xn)| ≥
1

2k

)
≤ 22kE

[
|It(Xm)− It(Xn)|2

]
= 22k ‖Xm −Xn‖2L2

A,0
.

Step 2. Since we assume Xn → X in L2
A, {Xn}∞n=1 is Cauchy w.r.t. the norm ‖·‖L2

A,0
, then

by definition, for any k, we can find Nk ∈ Z+ s.t. for all m,n ≥ Nk,

‖Xm −Xn‖2L2
A,0

≤ 1

23k
,

then
P
(

sup
0≤t≤T

|It(Xm)− It(Xn)| ≥
1

2k

)
≤ 22k

23k
=

1

2k
.

In particular,
P
(

sup
0≤t≤T

|It(XNk
)− It(XNk+1)| ≥

1

2k

)
≤ 1

2k
.

By Borel-Cantelli lemma, since
∞∑
k=1

P
(

sup
0≤t≤T

|It(XNk
)− It(XNk+1)| ≥

1

2k

)
≤

∞∑
k=1

1

2k
= 1 < ∞,

we have
P
(

sup
0≤t≤T

|It(XNk
)− It(XNk+1)| ≥

1

2k
i.o.

)
= 0,

i.e. there is k0 ∈ Z+, for any k ≥ k0,

P
(

sup
0≤t≤T

|It(XNk
)− It(XNk+1)| ≤

1

2k

)
= 1,

i.e.
‖It(XNk

)− It(XNk+1)‖∞ ≤ 1

2k
, a.s.

Step 3. For any ε > 0, let k1 be large enough s.t.

1

2k1−1
< ε,

17
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let K = max{k0, k1}, then for any j > k ≥ K,∥∥It(XNj
)− It(XNk

)
∥∥
∞ ≤

∥∥It(XNj
)− It(XNj−1)

∥∥
∞ + · · ·+ ‖It(XNk+1)− It(XNk

)‖∞

≤ 1

2j−1
+ · · ·+ 1

2k+1
+

1

2k

≤ 1

2k
(

∞∑
l=0

1

2l
)

≤ 1

2k−1
< ε,

therefore the subsequence {It(XNk
)}∞k=1 is Cauchy a.s., hence its limit

lim
k→∞

It(XNk
)

is continuous a.s.
Step 4. Show limk→∞ It(XNk

) is a continuous version of It(X).
Since for each t, It(Xn) → It(X) in L2, hence also in probability, any a.s. convergent
subsequence must have the same limit It(X), therefore

lim
k→∞

It(XNk
) = It(X) ∀t ∈ [0, T ] a.s.

Then
t 7→ lim

k→∞
It(XNk

)

is a continuous version of {It(X) : t ∈ [0, T ]}.

Corollary 1.2.6 (Quadratic variation). Let X ∈ L2
A, then the quadratic variation of It(X)

is
[X](t) := lim

|Γ|→0
V 2(It(X), [0, t],Γ) =

∫ t

0

X2
s (ω)ds, in probability.

Proof. Suppose Γ = {0 = t0 < t1 < · · · < tn = t}, then

V 2(It(X), [0, t],Γ) =

n−1∑
k=0

|Itk+1(X)− Itk(X)|2.

18
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By Itô isometry, we have

E
(
|Itk+1(X)− Itk(X)|2

)
= E

(∣∣∣∣∫ tk+1

tk

Xs dBs

∣∣∣∣2
)

= E
(∫ tk+1

tk

X2
s ds

)
,

so
E[V 2(It(X), [0, t],Γ)] = E

(∫ t

0

X2
s ds

)
,

therefore as |Γ| → 0,

V 2(It(X), [0, t],Γ) →
∫ t

0

X2
s ds, in L1,

hence also in probability.

Corollary 1.2.7. For any X ∈ L2
A,

I2t (X)− [X](t) = I2t (X)−
∫ t

0

X2
s ds

is a martingale, i.e. for any 0 ≤ s < t,

E
[
I2t (X)− [X](t)

∣∣∣∣Fs

]
= I2s (X)− [X](s).

Proof. Direct from the definition of quadratic variation (1.1.5).

1.3 Itô formula

Theorem 1.3.1 (Itô formula). If f : R → R ∈ C2, then w.p.1.,

f(Bt)− f(B0) =

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds.

Proof. Fix partition Γ = {0 = t0 < t1 < · · · < tn = t}, then

f(Bt)− f(B0) =

n−1∑
k=0

[f(Btk+1 − f(Btk))].

Claim. As |Γ| → 0,

n−1∑
k=0

[f(Btk+1 − f(Btk))] →
∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds

19
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in probability.
Remark: this claim implies Itô formula. If we know X = Xn → X∞ in probability as n → ∞,
then for any ε > 0,

P(|X −X∞| > ε) = lim
n→∞

P(|Xn −X∞| > ε) = 0,

thus
P(X = X∞) = P(

∞⋂
m=1

|X −X∞| ≤ 1

m
) = lim

m→∞
P(|X −X∞| ≤ 1

m
) = 1.

Proof of the Claim. We will prove a weak version, i.e. suppose

sup
x∈R

(|f(x)|+ |f ′(x)|) < ∞.

By Taylor’s theorem,

n−1∑
k=0

[f(Btk+1 − f(Btk))] =

n−1∑
k=0

f ′(Btk)(Btk+1 − Btk) +
1

2

n−1∑
k=0

f ′′(zk)(Btk+1 − Btk)
2 := S1 +

S2

2
,

for some zk(ω) between Btk(ω) and Btk+1(ω).
We will show as |Γ| → 0,

S1 →
∫ t

0

f ′(Bs)dBs = It(f
′(B)), S2 →

∫ t

0

f ′′(Bs)ds, in probability.

(1) For S1, we will show S1 → It(f
′(B)) in L2 hence in probability. Let

Xs(ω) =

n−1∑
k=0

f ′(Btk(ω))1(tk,tk+1](s),

20
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then X ∈ L2
A,0 and S1 = It(X). By Itô isometry,

E[|S1 − It(f
′(B))|2] = E[|It(X − f ′(B))|2] =

∫ t

0

E[|Xs − f ′(Bs)|2]ds

=

n−1∑
k=0

∫ tk+1

tk

E[|f ′(Btk)− f ′(Bs)|2]ds

=

n−1∑
k=0

∫ tk+1

tk

E[|f ′(c)|2|Btk − Bs|2]ds (by the mean value theorem)

≤ M2
n−1∑
k=0

∫ tk+1

tk

(s− tk)ds

=
M2

2

n−1∑
k=0

(tk+1 − tk)
2

≤ M2t|Γ|

→ 0, as |Γ| → 0

(2)For S2, we have

S2 =

n−1∑
k=0

f ′′(Btk)(Btk+1 − Btk)
2 +

n−1∑
k=0

[f ′′(zk)− f ′′(Btk)](Btk+1 − Btk)
2 := S3 + S4,

For S3,

S3 =

n−1∑
k=0

f ′′(Btk)(tk+1 − tk) +

n−1∑
k=0

f ′′(Btk)[(Btk+1 − Btk)
2 − (tk+1 − tk)] =: S5 + S6.

The Riemann sum
lim
|Γ|→0

S5 =

∫ t

0

f ′′(Bs)ds, a.s.

and S6 → 0 in L2 by computing E[S2
6 ].
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E[S2
6 ] = E

(n−1∑
k=0

f ′′(Btk)[(Btk+1 − Btk)
2 − (tk+1 − tk)]

)2


= E

n−1∑
j=0

n−1∑
k=0

f ′′(Btj)f
′′(Btk)[(Btj+1 − Btj)

2 − (tj+1 − tj)][(Btk+1 − Btk)
2 − (tk+1 − tk)]


=

n−1∑
j=0

n−1∑
k=0

E
[
f ′′(Btj)f

′′(Btk)[(Btj+1 − Btj)
2 − (tj+1 − tj)][(Btk+1 − Btk)

2 − (tk+1 − tk)]
]

For the case j 6= k, e.g. j < k, we have tj < tk, so conditioning on Ftk ,

E
[
f ′′(Btj)f

′′(Btk)[(Btj+1 − Btj)
2 − (tj+1 − tj)][(Btk+1 − Btk)

2 − (tk+1 − tk)]
]

= E
[
E
[
f ′′(Btj)f

′′(Btk)[(Btj+1 − Btj)
2 − (tj+1 − tj)][(Btk+1 − Btk)

2 − (tk+1 − tk)]

∣∣∣∣Ftk

]]
= E

[
f ′′(Btj)f

′′(Btk)[(Btj+1 − Btj)
2 − (tj+1 − tj)]E

[
[(Btk+1 − Btk)

2 − (tk+1 − tk)]

∣∣∣∣Ftk

]]
= E

[
f ′′(Btj)f

′′(Btk)[(Btj+1 − Btj)
2 − (tj+1 − tj)]E

[
[(Btk+1 − Btk)

2 − (tk+1 − tk)]
]]

= E
[
f ′′(Btj)f

′′(Btk)[(Btj+1 − Btj)
2 − (tj+1 − tj)]

]
E
[
[(Btk+1 − Btk)

2 − (tk+1 − tk)]
]

= 0,

so only the term j = k remains in the sum, i.e.

E[S2
6 ] =

n−1∑
k=0

E
[
|f ′′(Btk)|2[(Btk+1 − Btk)

2 − (tk+1 − tk)]
2
]

≤ C2
n−1∑
k=0

E
[
[(Btk+1 − Btk)

2 − (tk+1 − tk)]
2
]

(assume |f ′′| ≤ C)

= C2
n−1∑
k=0

(tk+1 − tk)
2E

[(
(Btk+1 − Btk)

2

tk+1 − tk
− 1

)2
]

= C2E[|ξ2 − 1|2]
n−1∑
k=0

(tk+1 − tk)
2 (ξ ∼ N (0, 1))

= C2E[|ξ2 − 1|2] · |Γ|t → 0 as |Γ| → 0.

For S4, since Bt is continuous w.p.1., there is rk ∈ [tk, tk+1] s.t. Brk is between Btk and Btk+1,
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thus

|S4| ≤
n−1∑
k=0

|f ′′(Brk)− f ′′(Btk)|(Btk+1 − Btk)
2 ≤ V 2(B,Γ, [0, t]) · max

k
|f ′′(Brk)− f ′′(Btk)|.

By the uniform continuity of s 7→ f ′′(Bs) on [0, t],

lim
|Γ|→0

max
k

|f ′′(Brk)− f ′′(Btk)| = 0, a.s.

and by the quadratic variation of BM,

V 2(B,Γ, [0, t]) → t in L2,

Since convergence a.s. and in L2 both imply convergence in probability, and convergence in
probability is linear, so S4 → 0 in probability.

Remark. 1. For simplicity, we sometimes denote the formula as

df(Bt) = f ′(Bt)dBt +
1

2
f ′′(Bt)dt.

Example 1.3.2. By Itô formula, let f = x2/2 we have

B2
t

2
− 0 =

∫ t

0

Bs dBs +
1

2

∫ t

0

ds,

therefore ∫ t

0

Bs dBs =
B2
t

2
− t

2
.

Theorem 1.3.3. Suppose f(t, x) : [0,∞)×R → R ∈ C1,2, then w.p.1.

f(t, Bt)− f(0, B0) =

∫ t

0

[
∂f

∂t
+

1

2

∂2f

∂x2

]
(s,Bs)ds+

∫ t

0

∂f

∂x
(s,Bs)dBs.

Corollary 1.3.4. If f(t, x) is a polynomial in t, x with

∂f

∂t
+

1

2

∂2f

∂x2
= 0,

then f(t, Bt) is a martingale and E[f(t, Bt)] = f(0, B0).
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Proof. By Theorem 1.3.3,

f(t, Bt)− f(0, B0) =

∫ t

0

∂f

∂x
(s,Bs)dBs.

We want to show

E

[∫ T

0

∣∣∣∣∂f∂x (s,Bs)

∣∣∣∣2 ds
]
=

∫ T

0

E

[∣∣∣∣∂f∂x (s,Bs)

∣∣∣∣2
]

ds < ∞,

Since f(t, x) is a polynomial, we can write∣∣∣∣∂f∂x (s,Bs)

∣∣∣∣2 = m∑
i=0

n∑
j=0

cijs
iBj

s ≤ C(1 + sm)(1 + Bn
s ),

and

E

[∣∣∣∣∂f∂x (s,Bs)

∣∣∣∣2
]
≤ E[C(1 + sm)(1 + Bn

s )] = C(1 + sm)(1 + E(Bn
s )) ≤ C(1 + sm)(1 + C1s

n/2),

then its integral is finite. Therefore ∫ t

0

∂f

∂x
(s,Bs)dBs

is an Itô integral, hence a martingale.

Example 1.3.5. Let α ∈ R, define

Xt = X0 exp(αBt −
1

2
α2t).

Let f(t, x) = X0 exp(αx− 1
2α

2t)

dXs = df(Bs, s) =

[
∂f

∂t
+

1

2

∂2f

∂x2

]
(s,Bs)ds+ ∂f

∂x
(s,Bs)dBs

= (−α2

2
Xs +

1

2
α2Xs)ds+ αXs dBs

= αXs dBs.

Therefore Xt defined above satisfies the stochastic differential equation (SDE)

dXt = αXt dBt, X(0) = X0.

24



Notes Huarui Zhou MATH545

1.4 Itô formula for Itô processes

Definition 1.4.1. Let Ft be the filtration s.t. Bt adapted to it. Suppose µ(s, ω) and σ(s, ω)

are adapted processes w.r.t. Ft and satisfy the usual condition:

P
(∫ t

0

|µ|ds < ∞
)

= 1, P
(∫ t

0

|σ|2 ds < ∞
)

= 1.

We call Z(t, ω) (or Zt(ω)) an Itô process if it is defined by

Z(t, ω) = Z(0, ω) +

∫ t

0

µ(s, ω)ds+
∫ t

0

σ(s, ω)dBs,

and we denote it as
dZ = µdt+ σ dB.

µs is called the drift term and σs is the diffusion coefficient.

Remark. The quadratic variation for Zt is

[Z,Z](t) =

∫ t

0

σ2s ds.

Theorem 1.4.2. Suppose f ∈ C2 and Zt is an Itô process, then w.p.1.

f(Zt)− f(Z0) =

∫ t

0

f ′(Zs)µs ds+
∫ t

0

f ′(Zs)σs dBs +
1

2

∫ t

0

f ′′(Zs)σ
2
s ds.

Theorem 1.4.3. Suppose f(t, x) : [0,∞) × R → R ∈ C1,2 and Zt is an Itô process. Then
w.p.1.

f(t, Zt)− f(0, Z0) =

∫ t

0

[
∂f

∂t
(s, Zs) + µs

∂f

∂x
(s, Zs) +

1

2
σ2s

∂2f

∂x2
(s, Zs)

]
ds+

∫ t

0

σs
∂f

∂x
(s, Zs)dBs.

Example 1.4.4 (Ornstein-Unlenbeck process). Let α, σ > 0, define the Ornstein-Unlenbeck
process by

Xt = X0e
−αt + σ

∫ t

0

e−α(t−s) dBs.

Let
Zt =

∫ t

0

eαs dBs,
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and f(t, x) = X0e
−αt + σe−αtx, then Xt = f(t, Zt). By the Itô formula,

dXs =

[
∂f

∂t
(s, Zs) +

1

2
e2αs

∂2f

∂x2
(s, Zs)

]
ds+ eαs

∂f

∂x
(s, Zs)dBs

=
∂f

∂t
(s, Zs)ds+ eαsσe−αs dBs

= −αX0e
−αs +−ασe−αsZs + σ dBs

= −αXs ds+ σ dBs.

Therefore, Xt defined above satisfies the SDE

dXt = −αXt dt+ σ dBt, X(0) = X0.

1.5 Multi-dimensional Itô formula

Definition 1.5.1. B(t) = (B(1)(t), B(2)(t), · · · , B(d)(t)) is called a d-dimensional BM if
{B(i)(t)}di=1 are independent 1-d BM. Define the Brownian filtration by

FB
t = σ(B(i)(s), 1 ≤ i ≤ d, 0 ≤ s ≤ t).

Theorem 1.5.2. For d-dimensional BM B = (B(1), · · · , B(d)), let f ∈ C2(Rd;R), then

f(Bt)− f(B0) =

d∑
i=1

∫ t

0

∂f

∂zi
(Bs)dB(i)

s +
1

2

d∑
i=1

∫ t

0

∂2f

∂z2i
(Bs)ds.

Example 1.5.3. Let d > 2, for d-dimensional BM B = (B(1), · · · , B(d)), define

|Bt| =

(
d∑

k=1

(B
(k)
t )2

)1/2

.

Let f(z1, · · · , zd) = (z21 + · · ·+ z2d)
1/2, then |Bt| = f(Bt). Since,

∂f

∂zi
=

zi
f
,

∂2f

∂z2i
=

f −
z2i
f

f2
=

f2 − z2i
f3

,
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by Itô’s formula, we have

f(Bt)− f(B0) =

d∑
i=1

∫ t

0

B
(i)
s

f(Bs)
dB(i)

s +
1

2

d∑
i=1

∫ t

0

f2(Bs)− (B
(i)
s )2

f3(Bs)
ds

=

d∑
i=1

∫ t

0

B
(i)
s

f(Bs)
dB(i)

s +
1

2

∫ t

0

df2(Bs)−
∑d

i=1(B
(i)
s )2

f3(Bs)
ds

=

d∑
i=1

∫ t

0

B
(i)
s

f(Bs)
dB(i)

s +
1

2

∫ t

0

d− 1

f(Bs)
ds,

i.e. |Bs| is the solution to the SDE

dXt =

d∑
i=1

B
(i)
t

Xt
dB(i)

t +
d− 1

2Xt
dt.

27



Notes Huarui Zhou MATH545

28



Chapter 2

Applications

2.1 Exit time and exit distribution for diffusion processes

2.1.1 1-dimension

Let (l, r) be an open real interval, consider the following 1-dimensional diffusion process:dXt = v(Xt)dt+ σ(Xt)dBt

X0 = x ∈ (l, r).

Define the operator
Lf(x) = σ2(x)

2
f ′′(x) + v(x)f(x).

Theorem 2.1.1. Let [a, b] ⊆ (l, r), suppose the diffusion starts at X0 = x ∈ [a, b]. Let

τ = inf{t ≥ 0 : Xt /∈ [a, b]}.

Then the unique solution p(x) to the ODELp(x) = −1

p(a) = p(b) = 0

satisfies
p(x) = Ex(τ)
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Proof. Apply Itô’s formula to p(Xt) on [0, τ ], then we have

p(Xτ∧t) = p(X0) +

∫ τ∧t

0

p′(Xs)σ(Xs)dBs +

∫ τ∧t

0

Lp(Xs)ds

= p(x) +

∫ τ∧t

0

p′(Xs)σ(Xs)dBs − τ ∧ t,

Let t → ∞, we have
E(τ) = p(x).

Define u : (l, r) → R by

u(x) =

∫ x

x0

exp
(
−2

∫ y

x0

v(r)/σ2(r)dr
)

dy,

where x0 ∈ (l, r) is an arbitrary point, then u is the solution to the ODE:
Lu(x) = 0,

u(x0) = 0

u′(x0) > 0.

For any [a, b] ⊂ (l, r), define
h(x) =

u(x)− u(a)

u(b)− u(a)
,

then h is the solution to the ODE for all x ∈ [a, b],
Lh(x) = 0,

h(a) = 0

h(b) = 1.

Define
τa = inf{t ≥ 0 : Xt = a}, τb = inf{t ≥ 0 : Xt = b}.

Then we have the following result.

Theorem 2.1.2. Px(Xτ = a) = Px(τa < τb) = 1−h(x) and Px(Xτ = b) = Px(τb < τa) = h(x).
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Proof. Apply Itô’s formula to u(Xt) on [0, τ ], then we have

u(Xτ∧t) = u(X0) +

∫ τ∧t

0

u′(Xs)σ(Xs)dBs +

∫ τ∧t

0

Lu(Xs)ds

= u(x) +

∫ τ∧t

0

u′(Xs)σ(Xs)dBs,

then
E[u(Xτ∧t)] = u(x).

Let t → ∞, we have

u(x) = E[u(Xτ )] = u(a)Px(Xτ = a) + bPx(Xτ = b).

Since 1 = Px(Xτ = a) + Px(Xτ = b), we have

Px(Xτ = a) =
u(b)− u(x)

u(b)− u(a)
, Px(Xτ = b) =

u(x)− u(a)

u(b)− u(a)
.

Example 2.1.3. Let D = [0, R] for some R > 0. Consider the diffusion processdXt = v dt+ dBt

X0 = x ∈ [0, R],

where v ∈ R \ {0} is a constant.
(1) For the exit time, solving the ODELp(x) = 1

2
p′′(x) + vp(x) = −1

p(0) = p(R) = 0,

we have
Ex(τD) = p(x) =

−R

v(1− e−2vR)

(
e−2vx − 1

)
− 1

v
x

(2) For the exit distribution, we have

u(x) =

∫ x

0

exp
(
−2

∫ y

0

v dr
)

dy =

∫ x

0

e−2vy dy = −e−2vx

2v
+

1

2v
,
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then we have
h(x) =

1− e−2vx

1− e−2vR
,

therefore
Px(τ0 < τR) = 1− h(x) =

e−2vx − e−2vR

1− e−2vR
,

let R → ∞, we have
Px(τ0 < ∞) = e−2vx.

In other words, as the starting point increases, the probability that Xt reaches 0 decreases
exponentially.

2.1.2 d-dimension

Consider the d-dimensional diffusion process Xt.

Theorem 2.1.4. Let D ⊆ Rd be an open set, suppose Xt starts at X0 = x ∈ D, define

τ = inf{t ≥ 0 : Xt /∈ D}.

Then the unique solution p(x) to the PDELp(x) = −1, x ∈ D

p(x) = 0, x ∈ ∂D

satisfies
p(x) = Ex(τ).

We can also calculate the exit distribution for some special cases, see the following exam-
ple.

Example 2.1.5. Let Bt be a standard d-dimensional Brownian motion starting at x ∈ Rd,
and let 0 < r < R. Define the open annulus domain

D := {x ∈ Rd : r < |x| < R}.

Let τ = inf{t ≥ 0 : Bt /∈ D} be the first exit time from D. Consider the boundary value
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problem: 
Lu(x) = 1

2
∆u(x) = 0, x ∈ D,

u(x) = 0, |x| = r,

u(x) = 1, |x| = R.

Then the function u(x) gives the probability that Brownian motion starting at x exits the
domain D through the outer boundary |x| = R, i.e.,

u(x) = Px(|Bτ | = R).

Consequently, the complementary probability is:

Px(|Bτ | = r) = 1− u(x).

Since the problem is radially symmetric, u(x) depends only on ρ = |x|. Let u(x) = v(ρ).
The PDE reduces to the ODE:

1

2

(
v′′(ρ) +

d− 1

ρ
v′(ρ)

)
= 0, r < ρ < R.

Solving this, we get:

• For d = 2:
v(ρ) =

log(ρ/r)
log(R/r)

.

• For d ≥ 3:
v(ρ) =

ρ2−d − r2−d

R2−d − r2−d
.

Therefore,

Px(|Bτ | = r) = 1− u(x) =


1− log(|x|/r)

log(R/r)
, d = 2,

1− |x|2−d − r2−d

R2−d − r2−d
, d ≥ 3.

2.2 Lévy’s characterization of BM

Theorem 2.2.1 (Lévy). Let Xt with X0 = 0 be a continuous martingale w.r.t. Ft. If
[X]t = t, then Xt is a standard BM.
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Proof. Step 1. We only need to show for any 0 ≤ s < t:

(1) Xt −Xs is independent of Fs;

(2) Xt −Xs ∼ N (0, t− s).

Claim: The above two statements hold if and only if for any u ∈ R,

E[eiu(Xt−Xs)|Fs] = e−u2(t−s)/2. (2.1)

The “only if” part is obvious. We will show the “if” part. Suppose (2.1) holds, first

φXt−Xs
(u) = E[eiu(Xt−Xs)] = E[E[eiu(Xt−Xs)|Fs]] = E[e−u2(t−s)/2] = e−u2(t−s)/2,

by the property of the characteristic function, Xt −Xs ∼ N (0, t− s).
Second, by the definition of conditional expectation, for any A ∈ Fs,

E[eiu(Xt−Xs)1A] = E[e−u2(t−s)/2
1A] = e−u2(t−s)/2P(A).

Then for any bounded r.v. Y ∈ Fs, it can be approximated by simple r.v. Yn ∈ Fs, thus

E[eiu(Xt−Xs)Y ] = e−u2(t−s)/2E(Y ),

For any B ∈ Fs, let Y = eiw1B , we have

E[eiu(Xt−Xs)eiw1B ] = e−u2(t−s)/2E(eiw1B), ∀u,w ∈ R,

thus Xt −Xs and 1B are independent for any B ∈ Fs, i.e. Xt −Xs is independent of Fs.
Step 2. We will then prove (2.1) is true. Let f(x) = eiux, then

f ′(x) = iueiux, f ′′(x) = −u2eiux.

By Itô’s formula,

eiuXt − eiuXs = f(Xt)− f(Xs) =

∫ t

s

f ′(Xr)dXr +
1

2

∫ t

s

f ′′(Xr)d[X]r

= iu

∫ t

s

eiuXr dXr −
u2

2

∫ t

s

eiuXr dr.
(2.2)

Since |eiuXr | = 1, eiuXt ∈ L2
A, the first integral is a martingale by the property of Itô integral,
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thus
E
[∫ t

s

eiuXr dXr

∣∣∣∣Fs

]
= 0.

Multiplying both sides of (2.2) by e−iuXs and take conditional expectation, we have

E
[
eiu(Xt−Xs) − 1

∣∣∣∣Fs

]
= −u2

2
E
[∫ t

s

eiu(Xr−Xs) dr
∣∣∣∣Fs

]
.

Let
g(t) := E[eiu(Xt−Xs)|Fs],

then applying Fubini’s theorem for conditional expectations, we have

g(t)− 1 = −u2

2

∫ t

s

g(r)dr,

i.e.
g′(t) = −u2

2
g(t), g(s) = 1.

Solving the ODE, we get the unique solution

g(t) = e−u2(t−s)/2.
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