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This note provides a detailed overview of the graduate course Probability (MATHG641)
instructed by Prof. Quanjun Lang. The course was remarkably interesting, covering a wide
range of advanced probability theory topics, including martingale, Markov chain, ergodic
theory, and Brownian motion. I primarily use this summary note for review purposes after
each lecture. The content is mainly sourced from Durrett’s book [2] and Prof. Lang’s
lectures. I've reorganized many proofs myself to ensure a thorough examination of each
detail, though some steps may appear trivial. I also added a few theorems I read from other
books (like [5]) or online lecture notes. Thank you for taking the time to read this note if

you happen to find it online.
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1 Conditional expectation

1.1 Definition of conditional expectation

Definition 1.1. Suppose X : Q — R is a random variable (r.v.) on the probability space
(2, Fo,P) and X is integrable (i.e. E(]X]|) < o0). F C Fy is a sub-o-field. We call r.v.

Y : 2 — R the conditional expectation of X given F if it satisfies two conditions:
(1) Y is F-measurable (or Y € F for short).

(2) E(X14) =E(Y1,) for any A € F.

We denote Y by E(X|F).

Theorem 1.2. Given the conditions in the above definition, such r.v. Y exists and is unique

(in the sense of “almost sure”).

Proof. Uniqueness. Let Y, Y’ be two r.v. that satisfy conditions (1) and (2). Then Y,Y’ €

F and for any A € F, we have
E(Y1,) = ]E(Y/]lA) =E(X1,).

Taking A={weQ:Y —-Y" >¢e >0} for any ¢ > 0, then A € F (because Y — Y’ € F and
(Y —Y")"I([e,0)) € F), and

0=E(Y14) - E(Y'Ly) = E[(Y - Y')L4] > E(cL4) = eP(A),

hence P(A) = 0 for any € > 0, in other word, P(Y =Y’ < 0) = 1. Similarly, P(Y -Y’ > 0) =1,

then

P(Y =Y)=PY -Y' <0)-PY —-Y' <0)=P(Y - Y' <0) —P{Y - Y’ > 0}) = 1.
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Therefore Y =Y’ a.s.

Existence. Recall Radon-Nikodym theorem:

Theorem(Radon-Nikodym). Suppose p and v are both o-finite measure on (2, F), if v < p
(for any A € F, u(A) = 0 = v(A) = 0), there exists a F-measurable function f: Q — R

(called the density of v over p), s.t. for any A € F,

V(A) = /A e

First suppose X > 0. Define
v(A) =E(X1,4) = / XdP, VAeF.
A

Easy to verify v : F — [0, 00) is a finite measure on F and v < P. By R-N thm, we can find

a JF-measurable function f, s.t.
v(A) =E(fla), VAeF.

Now f is the conditional expectation of X given F. For general r.v. X, let X+ = max{X, 0},
X~ = max{—X,0}, then X* X_ >0and X = XT — X~. By previous result, there exist
[t [~ e Fst.

E(f+ﬂA) :E<X+]1A), E(f_ﬂA) :E<X_]1A), VA € F.

Define f = f* — f~ € F,
E(fﬂA):E(X]lA) VA € F. ]

Example 1.3. (1) If X = ¢ is a constant, then E(c|F) = ¢, because the constant function

is measurable on any o-field).
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(2) If F = Fo, then
E(X|F) = X.

(3) If F ={@,Q}, then
E(X|F) =E(X).
(4) Let Q1,Q9,--- be a partition of Q with P(w;) >0, F = 0(Q;;¢ > 1). Then

B(XIF) = 3 St

1.2 Property of conditional expectation

Proposition 1.4. Let (2, Fo,P) be a probability space, F C Fy is a sub-o-field. Let X and
Y be r.v. with E(|X|) <0 and E(|Y]) < 0.

(1) For any a,b € R, E(aX + bY|F) = aE(X|F) + bE(Y|F).
(2) If X <Y, then E(X|F) <E(Y|F) a.s.
(3) If X;, > 0 and X, 1 X, then

E(X,|F) 1 E(X|F).
(4) If o(X) and F are independent, then E(X|F) = E(X).
(5) If X € F, then E(X|F) = X.

Proof. (1) verify the definition: first, since linear combination of measurable function is also

measurable, aE(X|F) + bE(Y|F) € F; second, for any A € F,

E[(aE(X|F) + bE(Y|F))14] = aE[E(X|F)L] + bE[E(Y|F)La]
— aB(X14) + bE(Y1y4)

— E[(aX + bY)14],

6
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thus E(aX + bY|F) = aE(X|F) + bE(Y|F).
(2) for any £ > 0, define A = {w € Q : E(X|F)(w) — E(Y|F)(w) > & > 0}, then A € F since
E(X|F) € F and E(Y|F) € F. By the definition and X <Y, we have

EE(X[F)14] = E(X14) <E(Y14) =E[E(Y|F)1L4],

then
0> E[(E(X|F) —E(Y[F))14] > eE(14) = eP(A),

we conclude P(A) =0 by € > 0 and P(A4) > 0. In other word, P(E(X|F) <E(Y|F)) =1, ie.
E(X|F) <E(Y|F) as.

(3) By X,, 1 and the result from (2), we have E(X,|F) is also increasing. Moreover, X,
is bounded, leading to E(X,|F) is also bounded for all n. By the bounded convergence

theorem, the limit of E(X,|F) exists, denoted as Z. For any A € F, by the definition,

E[E(Xn“F)]lA] - E(Xn]lA)

By the monotone convergence theorem and E(X,|F) 1 Z, X,, T X, we have

E(Z14) = lim E(E(X,F)1a) = lim E(X,14) = E(X14),

n—oo

and Z € F because E(X,|F) € F and the limit of measurable functions is also measurable.
Therefore, Z satisfies the definition of E(X|F), i.e. Z =E(X|F).
(4) First E(X) is a constant so it is measurable for any o-field, of course for F. Second, for
any A € F,

E[E(X)14] = E(X)E(14) = E(X)P(A),

and by independence,

E(X14) = E(X)E(14) = E(X)P(A).
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(5) Obviously. O

Proposition 1.5 (Jensen’s inequality). Let ¢ be a convex function on R, and X be a r.v.

with E(|X|) < oo and E(|p(X)]) < co. Then

p(E(X]F)) < E(e(X)]F).

Proof. The proof will be much easier if we use the following property of convex function:

Theorem. Any convex function can be written as the supremum of some affine functions.*

“See https://proofwiki.org/wiki/Convex_Real Function_is_Pointwise_Supremum_of_ Affine_
Functions

Let S'={(a,b) € Qx Q:az+b < ¢(x)}, from the above theorem, ¢(z) = sup(, pyes(az +b).
For a fixed (a,b) € S,
aX +b < p(X),

by Proposition 1.4,
aE(X|F) +b < E(e(X)|F), a.s.

define
A(a,b) = {w eQ: aE(X|.7:) +b> E(@(X)‘.F)},

thus A, ) is a null set. Since the countable union of null sets is also a null set (Note: the

uncountable union of null sets can generate an un-null set, that is why we make S countable!),


https://proofwiki.org/wiki/Convex_Real_Function_is_Pointwise_Supremum_of_Affine_Functions
https://proofwiki.org/wiki/Convex_Real_Function_is_Pointwise_Supremum_of_Affine_Functions
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we have
Plwe Q: (SZI)ES(QE(X’}_) +b)(w) > E(p(X)|F)(w)]
=P | {weQ:aB(X|F)(w)+b>E(e(X)|F)(w)}]
(a,b)esS
= I U Ap))
(a,b)eS
=0
p(E(X|F)) = sup (E(X[F)+b) <E(p(X)[F), as. 0

(a,b)esS

Proposition 1.6 (Contraction in LP). For any p > 1, we have

E(IX["1F) = [E(X]F)[P.

Proposition 1.7 (“Fine enough”). Let F C G be two sub-o-fields, and E(X|G) € F, then

E(X|F) = E(X|G).

Proof. Since E(X|G) € F, for proving the equality, we only need to prove for any A € F,

EE(X|G)1a] = E[X14],

this is true from the definition of E(X|G), and above A € F C G.

Proposition 1.8 (“The smaller o-field wins”). Let F C G be two sub-o-field, then

(1) E[E(X|F)|G] = E(X]F)

(2) E[E(X]G)|F] = E(X|F)
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Proof. (1) First E(X|F) € G because E(X|F) € F and F C G. Second, for any A € G,

EE(X|F)14] = E[E(X|F)14].

(2)First E(X|F) € F by definition. Second, for any A € F C G, by the definition of E(X|G)
and E(X|F),
EE(X|G)14] = E[X14] = E[E(X|F)14]. O

Corollary 1.9 (Law of total expectation).

EE(X|F)] = E(X)

Proof. take G = {@,Q}, obviously G C F, thus from Proposition 1.8,

EE(X|F)] = EEX]F)|G] = E(X]G) = E(X). m

Proposition 1.10 (“Taking out what is known”). Let X € F, E(]Y]) < oo, E(|XY]) < oo,
then
E(XY|F) = XE(Y|F).

Proof. 1t is obvious that XE(Y|F) € F, so we only need to prove (2) in the definition, i.e.
for any A € F,
E[XE(Y|F)l4] = E(XY1y,). (%)

We can prove it by performing the 4-step procedure.

1. Indicator. Suppose X = 1g € F with £ € F, then

EQgEY|F)14] = E[E(Y|F)lane] = EY1ang) = E(1gY 14),

thus (%) holds.

10
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2. Simple function. Suppose X =) a;1p, with E; € F, then (*) still holds by linearity.
3. Non-negative function. Suppose X,Y > 0. We can construct a series of simple functions
Xp st. Xy, T X. Since Y > 0,E(Y|F) > 0, we have X,,E(Y|F) + XE(Y|F) and X,,Y 1 XY,

by the monotone convergence theorem,
EXnE(Y[F)La] = EIXE(Y[F)14], E(XY1a) = E(XY1a),

Hence E[XE(Y|F)14] = E(XY1,4).
4. General case. Let X = XT - X~ and Y =Y — Y, then

E[XEY|F)14]
=E[(XT - XE(Y T — Y |F)l4]
=EXTE(YT|F)14A] +E[X E(Y |F)la] — E[XTE(Y | F)1a] — E[X E(YT|F)14]
=E(XTYTIA)+EX Y 14) -EX Y T14) - EXTY 1)

—E[(XT — X )Y Y )14] = E(XY14).
0

Proposition 1.11 (Conditional Expectation as projections in L?). Let X be a r.v. with

E(X?) < o0, i.e. X € L?(Fy). And for any Y € F with E(Y?) < o0, i.e. Y € L?(F), we have
E[(X —Y)’] > E[(X — E(X|F))?,

the equality holds if and only if Y = E(X|F).

Proof. 1. First we have E(|XY|) < \/E(X?)E(Y?2) < oo, then by Proposition 1.10,

YE(X|F) = E(Y X|F).

11
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Taking the expectation, we have

EYE(X|F)] = EE(Y X|F)] = E(Y X),

1.e.
E[Y (X —E(X|F))] =0, VY € L*F)
this means any Y € L?(F) is perpendicular to X — E(X|F).
2. By the Jensen’s inequality (Proposition 1.5), [E(X|F)]? < E(X?2|F), thus

E[[E(X|F)] < E[E(X?F)] = E(X?) < o,

i.e. E(X|F) € LA(F).
3. Let Z =E(X|F) —Y € L3(F) (since both Y and E(X|F) are in the L?(F)), we have

E[(X — ¥)?) = E[(X — E(X|F) + 2’
— E[(X — E(X|F))? + E(2%) + 2E[Z(X — E(X|F))
— E[(X - E(X|F))? + E(2?)

> E[(X - E(X|F))?]

The equality holds if and only if Z =01ie. Y = E(X|F). ]

12
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2 Martingale

2.1 Definition of martingale

Definition 2.1. Suppose {F,, : n > 0} is a sequence of o-fields on Q, {X,, : n > 0} is a

sequence of r.v. on .
o We call {F,} a filtration if
FoCF1CFp--
o We say {X,} is adapted to {F,} if X,, is F,,-measurable (X,, € F,,) for all n > 0.
o We call {X,} a martingale w.r.t. {F,} if
(1) E(|Xal) < 00
(2) {X,} is adapted to {F,}

(3) E(Xp41|Fn) = Xy, for all n > 0.

{X,} is called a submartingale if the equality in (3) is replaced by >, or a supermartin-

gale if replaced by <.
Proposition 2.2 (easy property). Suppose {X,} is a martingale w.r.t. {F,}, then
(1) for any a € R, {X,, +a} is also a martingale.
(2) for any n >0, B(Xps1 — Xp|Fa) = 0.
(3) for anyn > 1, E(Xp) = E(X,).

The original meaning of the martingale is a set of strings on the horse neck to control its

head up or down.

Example 2.3. Let {X,, : n > 1} beiid. r.v. S, = So+X1+---+ X, where Sy is a constant.
Fo=42,Q} and F, = 0(X1, Xo, -+, Xy).

13
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Figure 1: Martingale (the purple string)

(1) If E(X;) =0 for any ¢ > 1,then {S,,n > 0} is a martingale.

Obviously E(S,,) = Sp < oo and S, € F,,. For the third requirement,
E(Sn+1|~7n) = E(Sn + Xn—i—llfn) = E(Sn’f"w + E<Xn+1|]:n) = Sp + E(Xn—H) = Sh,

where we used the fact that S, € F,, and o(X,,4+1) is independent of F,.

(2) fE(X;) =0 and 0 = E(X?) < oo for any i > 1, then {S2 —no? : n > 0} is a martingale.

First we have E(S2—no?) = E(S2)—no? = nE(X?)+S3—no? = S} < co and S2—no € F,.

14



Notes Huarui Zhou Probability

Moreover,

E[S2, 1 — (n+ 1)0°|Fy] = B[S} 1| Fn] — (n+ 1)0?
= E[(Sp + Xnt1)?|Fn] — (n+ 1)0?
=E[S2 + 25, X 41 + X2 1| Fn] — (n+1)0?
= E(S2|Fn) + 2E(Sn Xn41]Fn) + E(X2 1| F) — (n+ 1)o?
= Sp + 25, E(Xy41|Fn) + E(X54) — (n+ 1)o?
= Sp 4+ 25, E(Xp41) + E(Xpyy) — (n+1)0”

_ 2 2
=S5, —no”.

Example 2.4. Let X € L'(F), define

M, = E(X|F,),
then {M,} is a martingale.
Proof. Obviously M,, € L'(F,), and
E(Mp+1|Fn) = E[E(X|Fp1)| Fn] = E(X|F,) = M. O

Proposition 2.5. (1) Suppose {X,, : n > 0} is a supermartingale w.r.t. {F,}, then for any
n>m,

E(Xp|Fn) < Xom.

(2) Suppose {X,, : n >0} is a submartingale w.r.t. {F,}, then for any n > m,

E(Xn|Fm) = Xom.

15
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(3) Suppose {X,, : n >0} is a martingale w.r.t. {Fy}, then for any n > m,

E(Xn|Fm) = Xm.

Proof. (1) Fix m > 0, by definition, E(X,,+1|Fm) < X, Now suppose E(X, ikl Fm) < X

for some £ > 1. Then for k£ + 1 we have

E(Xm+k+1|-7:m) = E[E(Xm—kk—klu:m—s—k)lfm] < E[Xm—s—kl}—m] < X,

the first “="is due to “The smaller wins”, the following “<” is by the definition and induction
hypothesis. Hence by induction, E(X,|F,) < X,, for all n > m.
(2) Notice that {—X,} is supermartingale.

(3) Using the fact that martingale is both supermartingale and submartingale. ]

Proposition 2.6. (1) Suppose {X,} is a martingale w.r.t. F,, ¢ : R = R is a convex
function with E(|p(X,)|) < oo for alln > 0. Then {p(X,)} is a submartingale w.r.t.
Fn.

(2) Suppose {X,} is a submartingale w.r.t. Fp, ¢ : R — R is an increasing convex function

with E(|o(Xy)|) < 0o for alln > 0. Then {p(Xy)} is a submartingale w.r.t. F,.
(3) If {X,} is a submartingale, a € R, then {(X,, — a)T} is a submartingale.
(4) If {X,} is a supermartingale, a € R, then {X, A a} is a supermartingale.

Proof. (1)First, since ¢ is convex, then it is measurable, thus ¢ o X,, € F,,. Second, by

Jensen’s inequality,

Elp(Xnt1)Fn] = @(E(Xnt1]Fn)) = o(Xn).

16
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(2)Submartingale means E(X,,41|F) > X,,. Since ¢ is increasing, we have

Elp(Xnt1)Fn] 2 o(E(Xn41|Fn)) = o(Xn).

(3)Because p(x) = (xr — a)™ = max {0,z — a} is increasing and convex (See Figure 2).

T— ox)=(x-a)*
| ---a=2

o(x)
O B N W B~ O O N ©
! ! ) ! ! ! !

-100 -75 =50 -25 0.0

Figure 2: Plot of p(z) = (x —a)™

(4) Since

X, Aa=min{X,,a} =min{X, —a,0} +a=—max{—X, +a,0} +a=—(—X, +a)" +a,

where {—X,,} is a submartingale. Then apply (3), (=X, + a) is a submartingale, thus

—(—=X, +a)T + a is a supermartingale. L

2.2 Martingale convergence theorem

We will prove the Martingale convergence theorem in this section.

Definition 2.7. Let {F,, : n > 0} be a filtration, r.v. the sequence {H,, : n > 1} is said to

be predictable if H, € F,,_1 for all n > 1.

Consider a model of the stock market. Let X, (n > 0) be the value of one stock at time

17
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n, and H, be the total number of shares we hold between time n — 1 and time n.! Then our

total profit? from the stock market at time n (n > 1) is
n
(H-X)n = Hun(Xm— Xm-1),
m=1

and define (H - X)o = 0.

Example 2.8. Let {X,, = Xo+& +---+&, : n > 0} be a random walk starting from Xy = 3
with P(§ =1) =P(§ = —1) = 0.5. Let Hy =0, for n > 1, define H,, as

H, =

(Hpo1 —1)F. X, <3

Figure 3 shows the simulation of this model.

Proposition 2.9 (“No profit for unfair game on average”). Suppose {X,, : n > 0} is a
supermartingale, {Hy, : n > 1} is a predictable sequence with 0 < H,, < oo. Then (H - X),, is

a supermartingale.

(This conclusion remains true if we replace all “supermartingale” with “submartingale”

or “martingale”.)
Proof. For n > 0,
E((H - X)ng1|Fn) = E[(H - X)n + Hpp1 (X1 — X)) | Fal

=(H - X)p+ Hyr1E(Xpp1 — Xn|Fn)

< (HX)na

"'We will buy or sell shares depending on the stock value at time n — 1, then hold them until we know the
updated value at time n, i.e. the update of H is always after the update of X, that is why H,, € F,_1.

2To simplify the model, suppose we can get the shares without paying. So the profit is only affected by the
fluctuation of the stock value and number of shares we hold.

18
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(H-X)n
| |

Figure 3: Simulation of the stock value, shares and profit

the last “<” holds because Hy+1 > 0 and E(X,,4+; — X;,|F,) < 0 for supermartingale. ]

Remark.We immediately have E[(H-X),| < E[(H-X)o] = 0 by the property of supermartin-

gale, which means there is no profit on average for the supermartingale (unfair game).

Definition 2.10. We call r.v. N a stopping time, if for any n > 0,

{N =n} e F,.

Proposition 2.11. Suppose N is a stopping time, then for any m > 0,
(1) {N <m+1} ={N <m} € F,

2) (N>m}={N>m+1} e Fp,

19
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Proposition 2.12. Suppose N is a stopping time, {X,} is a supermartingale, then {Xnan}

is a supermartingale.

Proof. 1.For any n > 1, define Hy(w) = 1{y(w)>n} (W), then {H,} is predictable.

We only need to show H,, € F,,_1. This is true because
{H, =1} ={N >n} € F,_1.

2. Show (HX)n = XN/\n —XO.

(H-X)n =Y Hn(Xm— Xpn1)
m=1

= Z L nsmy (Xm — Xm-1)
m=1

NAn

= Z(Xm - mel)
m=1

= Xnan — Xo-

3. Finally, applying Proposition 2.9, we have Xy, = (H-X),+ Xo is a supermartingale. [

Next, we will prove the Martingale convergence theorem by constructing the “Crossing”
model. Suppose {X,, : n > 0} is a submartingale, and a,b € R with a < b. Define

Ny =inf{m :m >0, X,, < a}, No =inf{m : m > Ny, X,,, > b}, and for k > 2,

Nop_1 = 1nf{m cm > Nop_o, X < a}, Noyj. = mf{m :m > Nop_1, X > b},

in other word, Ng;_; is the the first time after Nop_o that X,, < a happens, Ny is the
the first time after Nop_; that X,,, > b happens. During the time between Nop_1 and Ny,
X is upcrossing the interval [a,b]. Define U, = sup{k : Noy < n} is the total number of

upcrossings by time n (See Figure 4).
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Figure 4: Example of upcrossings. In this case there are two upcrossings by time 100, i.e

Lemma 2.13 (Upcrossing inequality). Suppose { X, : m > 0} is a submartingale, then

E[(Xy —a)"] = E[(Xo — a)"]
b—a '

E(U,) <

Proof. 1. Nj are stopping time.
For n > 0,

{len}:{Xnga}E}—m
{Ngzn}:{n>N1,Xan}:{N1Sn—l}ﬂ{Xan}EFn,

then this claim is proved by induction.
2. For m > 1, define

I Nog1 <m < Ny
H,, =

0 otherwise

then H,, is predictable?.

3Actually, H,, is the strategy how we hold the shares: if the stock value is upcrossing the interval [a, b], we
always keep one (we only consider one or zero share for simplicity) share, otherwise, we sell all of them.
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We need to show H,, € F,,—1. Notice

(0.) oo
{H, =1} = U{NQk—l <m < Nop} = U{N2k—1 <m}N{Ngy, > m} € Fpq
k=1 k=1

3.Define Y;;, = X;,, Va = a + (X, — a)™, then by Proposition 2.6, Y, is a submartingale.
4.Claim: for alln > 1, (b—a)U, < (H -Y)p.

For £k > 1 and Ny < o0,

NQZ

k
H Y N2k Z Z Y - Y}—l) = Z(YNzi - YNZi—l) > k(b - a)'
1=1

1= 1] NQl 1—|—1

If n € {Nog, -+, Nogy1} (during the end of the £’th upcrossing to the beginning of the next
upcrossing),

(H : Y)n = (H : Y)N2k > k(b_ a)?

If ne {Ngp_1+1,---,Nox} (in the middle of the incomplete k’th upcrossing),

n

(H-Y)n=(H - Y)Ny_, + Z (Yin = Yin-1)
m=Nap_1+1

= (H : Y)NQk—l + Yo — YNQk—l
>(H-Y)n, Since Yn,, , = a,and Y, > a
= (H ’ Y)N2k—2

> (k—1)(b—a)

Above we have iterated all cases, hence (H -Y),, > Up(b — a) for all n > 1.

5. Define K, = 1— H,,,, then K,, is predictable, and Y,,, is a submartingale by claim 3, thus
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both (H -Y), and (K -Y), are submartingales by Proposition 2.9. Then

n n

n
Yn - YO == Z(Y; - Y;—l) = Z(Y:L - }/i—l)]li:upcrossing + Z(Y; - Y;—l)ﬂi:non—upcrossing
i=1 i=1 =1

= (H'Y)n+ (Ky)n

Therefore,
E[(Xn—a)"]-E[(Xo—a)"] = E(Yo—Yo) = E[(H-Y ), +E[(K Y),] > E[(HY),] = (b—a)E(Uy),

where E[(K - V)] = EE[(K - Y)a|F]] > E[(K - Y)o] = 0. 0

Theorem 2.14 (Martingale convergence theorem). Suppose {X,, : n > 0} is a submartingale

with sup E(X,I) < oo, then there exists a r.v. X with E(]X|) < oo s.t. X;, — X a.s.

Proof. 1. {U,} is increasing.
{k:Nop <n} C{k: Ny <n+1}, and

Up =sup{k : Nop, <n} <sup{k: Nox <n+1} = Upy1.

Let U, T U.
2. E(Up) is uniformly bounded.

By Lemma 2.13, and (X,, — a)t < X, + |a], E[(Xp — a)T] > 0, we have

E[(X, - 0)*] = E[(Xo— )] _ E(X) +la| _ M+la] _

E < <
(Un) = b—a - b—a ~ b—a ’
where M = sup{E(X,") : n > 0}.
3. By monotone convergence theorem,
M
E(U) = lim E0,) < 219

n—o00 b—CL
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then U < oo a.s.
4.1im,,_,o X, exists (finite or infinite) a.s.

Rewrite U as U,y for any a < b. Notice
{w: Ujgp)(w) = oo} = {liminf X;, <a < b < limsup X

then

P(lim X,, does not exist)
= P(liminf X,, < limsup X,,)

=P( U {liminf X, <a < b < limsup X,})
a,beQ

= IP( U {Ulap) = o0})
a,beQ

=0,

therefore P(lim X, exists) = 1. Denote X = lim,,_,, X,, except the above null set, and X =0
on the above null set, then X,, - X a.s.

5.E(1X]) < 0.

Notice that | X,,| = X;I + X, = 2X, — X,,, then

E(|Xn]) = 2B(X,]) — E(Xy) < 2E(X,) — E(Xo) < 2M + E(|Xo]) < o0,
where E(X,,) > E(Xy) by the property of submartingale. By Fatou’s Lemma,
E(|X]) = E(liminf|X,|) <lminfE(|X,|) < 2M + E(|Xy|) < oco. ]

Corollary 2.15. If {X,, : n > 0} is a supermartingale, X,, > 0, then there exists a r.v. with

4To make U (total number of upcrossings) infinite, X,, must be always oscillating to cross [a,b], i.e. its limit
cannot exist.
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E(X) <E(Xp) s.t. X, = X a.s.

Proof. {Y, = —X,, : n > 0} is a submartingale, and sup(Y,") = 0 < oo, so by Theorem 2.14,
there exists a r.v. Y with E(]Y]) < o0 s.t. ¥, = Y a.s. Let X = =Y, then X,, — X a.s. By

Fatou’s lemma,

E(X) = E(liminf X,,) < liminfE(X,,) < E(Xy),

because E(X,,) < E(Xj) for all n by the definition of supermartingale. ]

Application: Borel-Cantelli lemma for conditional probability

Lemma 2.16. Suppose {X,, : n > 0} is a martingale with | X,+1 — X,| < M < oo for all

n>0. Let
C={lim X,, <oo}, D ={limsupX, =+ooandliminfX,, = —oo}.
n—oo

Then P(CUD) = 1.

Theorem 2.17 (Doob’s decomposition). Any submartingale {X, : n > 0} can be written in
a unique way as X, = My + A,, where M, is a martingale and A, is a predictable increasing

sequence with Ag = 0.

Proof. 1. Define Ag = 0. Forn > 1, A, =Y.' _ [E(X|Fin-1) — Xim—1] € Fn_1, s0 A, is

m=1
predictable.
2. A, — Ap—1 = E(X,|F-1) — Xn—1 >0, so A, is increasing.
3.Let M,, = X,, — A,,.

]E(Mn‘fn—l) = E(Xn - An|fn—1> — ]E(Xn’fn—l) - An = (An - An—l + Xn—l) - An - Mn—la

thus M, is a martingale.
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4. Suppose there is another pair M) and A}, s.t. X,, = M/ + A}, then for n > 1, let
Yy =My, — My, = A, — Ay,

so Y, is a martingale and Y,, € F,,—1. By Y}, is a martingale,
E(Y,|Fn-1) =Yno1, a.s.

By Yn G fn—l,
E(Y,|Foo1) =Y,  as.

thus Y, = Y,,_1 a.s. And Yy = A — Ap = 0 by definition, we have ¥, = 0 a.s. for all n > 0,
i.e. M, = M) and A, = A, as. O

Theorem 2.18 (Borel-Cantelli lemma for conditional probability). Let{F, : n > 0} be a

filtration with Fo = {2,Q}, and {By, : n > 1} be a sequence of events with By, € F,_1, then
{Bnio}={) P(Bu|Fn1)=oo}.
n=1

2.3 Doob’s inequality
Lemma 2.19. If X =Y a.s., then E(X) =E(Y).

Proof. Denote A = {w: X(w) =Y (w)},
E(X —Y) =E[(Xy)1a] + E[(Xy)La] = E[(Xy)14] =0,

where E[(Xy )1 4] = 0 because the integral over a null set is zero. ]

Lemma 2.20. Let {X,, : n > 0} be a submartingale, and N is a stopping time with

P(N < k) =1
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for some k € N°, then

E(Xo) <E(Xy) < E(Xg).

Proof. 1.By Proposition 2.12, Xy, is a submartingale. And Xy, = Xy a.s., then by the

property of submartingale and Lemma 2.19,
E(Xo) = E(Xnno) < E(Xnar) = E(Xn).

2. Define K, = Iyy<py = Iyn<pn—1}, then K, € F,,_; thus predictable. By Proposition 2.9,

(K - X), is also a submartingale, and
n
(KX)o = Kn(Xm— Xpm1)
m=1
n
= Uvem13(Xm — Xim1)
m=1

n

Y (Xm=Xm1)=Xn—Xy, N<n-—1

= m=N-+1
0 N >n
= Xn - XN/\n-

Taking n = k, we have (for w € {N < k})

(K- X)p=Xg — Xnaw =X — Xy, as.

then by the property of submartingale and Lemma 2.19,

0= E[(K - X)o] < E[(K - X);] = E(X;, — Xn) = E(X}) - E(Xy). 0

SN < k for some k a.s. or N bounded a.s. is not the same as N < oo a.s. For example, suppose X has the
normal distribution, then X < oo a.s. but X is not bounded a.s.
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Theorem 2.21 (Doob’s maximal inequality). Let {X,, : m > 0} be a submartingale, for any
A >0, denote

X, = max X,/ A={X,>)\},

0<m<n
then
AP(A) < E(X,14) < E(X).

Proof. Let N =inf{m : X, > A} An, then Xy > X on A, thus
AP(A) = E(ML4) < E(Xn14).

Since N < n on Q, then by Lemma 2.20, E(Xy) < E(X,). On A¢ = {X,, < A}, Xy = Xy,
ie. E(Xy14c) =E(X,14c), thus

E(Xn14) = E(XN) — E(Xn1ac) < E(X;) — E(Xnlac) = E(Xn14) < E(X;14) <E(X,).

]

Below is an application of Doob’s maximal inequality.

Theorem 2.22 (Kolmogorov’s inequality). Suppose {X,, : n > 1} are independent with
E(X,) =0 and E(X2) < co. Let S, = > _1_ Xi, then for any a > 0,

IP’( max |Sp| > a> < Var(Sn).

1<m<n CL2

Proof. S, is a martingale because

E(Sn+1|~7:n) - E(Sn|~7:n) + E(Xn+1|}—n) = Sp + E(Xn+1) = 0.

Then S? is a submartingale by Proposition 2.6. Applying Theorem 2.21 to S2, and take
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A\ = a?, we have

a’P ( max 52, > a2) < E(S?) = Var(S,).

1<m<n

Notice that {maxi<;<n S2, > a®} = {maxi<m<n |Sm| > a}, which gives the desire result. [J

Lemma 2.23. If X is a r.v. with X >0, then for any p € (1, +00),
+oo
/ ptPIP(X > t) dt = E(XP).
0

Proof.

“+00 “+00
/ ptPIP(X > t)dt = / ptP~1 [ / 1ix>) dIP’] dt
0 0 Q
“+o00
:/ |:/ ptp_lll{X>t} dt‘| dP
Q LJo B
X
:/ / ptP~Ldt
Q 0

= / X7 dP = E(XP)
Q

dP

[]
Theorem 2.24 (Doob’s LP maximal inequality). If X,, is a submartingale, then for any

p € (1,400),

Bocp < (27) mey

Morever, if Y, is a martingale or a positive submartingale, and

Y* = Y,
n Oglrr%%{n‘ m‘v

then for any p € (1,+00),

E(Y;P) < (%)pmm»
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Proof. Take M > 0, we will work with X,, A M first.

1. For any ¢t > 0, if M > t, then
{w: Xp(W)AM >t} ={w: X,(w) >t}

if M <t, then

{w: Xp(w)AM >t} =02.
2. By Lemma 2.23, Theorem 2.21 and Fubini’s theorem,
+00 -
E[(X, A M)P] = / ptPIP(X, A M > t)dt
0
M —
= / ptPTIP(X, > t) dt
0
M
< / ptpﬂE(XrJ{ﬂ{)_(pt}) dt
0 >
M
= /0 Ptp_2E(Xrerﬂ{Xn/\M2t}) dt

XaAM
Xr / =2 dt
0

= Lo E[X (X A MY

=
< P EIXPPEIX A PV = /(- 1)
Thus
(B A P! < P XL,
or

p
B, k) < (L) B,
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let M — +o00, then we have

E(X7) < (ﬁ) E(X)7]

3. Let X,, = |Yy|, then X, is a submartingale. Notice X,/ = X,, = |Y},], and

Y= max |Yy,|= max |V,,|" = X,. O
0<m<n 0<m<n

Theorem 2.25 (LP convergence theorem). If X, is a martingale or a positive submartingale

with sup,, E(|X,|P) < oo, p € (1,00), then X, = X a.s. and in LP.

Proof. 1. By the property of martingale and positive submartingale,
E([Xnt1/P1Fn) = [E(Xni1|Fo) [P = [Xnl?,

so | X,|P is a submartingale. By the martingale convergence theorem, |X,[P — | X[ a.s.,
then X,, - X a.s.

2. By Theorem 2.24,
B |( sup X

0<m<n

< (jﬁ)pmxm

3. Since (SupPg<y<y [Xm|)? T (sup,>q [ Xn|)P, by monotone convergence theorem,

B {(sup X, = tim B ¢ sup x| = sup | sup 1)) < (ﬁ)psupﬁuxnrp)m,

n>0 0<m<n 0<m<n

thus sup,,~ | Xn| € LP.
4. Since |X| = limsup,, | X,| < sup,, |Xn| a.s., we have | X,, — Xoo| < (2sup,, | Xn|) a.s., then

by dominated convergence theorem, we have

lim E[|X, — Xoo|?] = 0. 0

n—oo
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Lemma 2.26 (Orthogonality of martingale increments). Let X,, be a martingale with E(X?2) <

oo for alln. Form <n and r.v. Y € Fy, with E(Y?) < oo, we have
E[(X, — Xn)Y] =0.
Hence forl <m <n,
E[(X, — Xm)(Xm — Xp)] =0.

Proof. 1. Cauchy-Schwarz: E[(X,, — X,,,)Y] < E(|X,,)Y|) + E(|X,,Y]) < VE(X2)E(Y?2) +
E(X2)E(Y?) < cc.
QE[(Xn - Xm)Y] = ]E[E[(Xn - Xm)Y|]:mH = E[YE[(Xn - Xm)’fmﬂ = 0. O

Lemma 2.27. If X,, is a martingale with E(X?2) < oo for all n, m < n, then

E[(Xn - Xm)z‘]:m] = E(X%‘}-m) - X7

m:

Proof. E[(Xy — Xon)?|Fm] = E[X2 — 2X,, X0, + X2 | Fon] = E(X2|Fn) — 2X0 (X0 | Fr) + X2,
conclude by E(X,|Fp) = Xon. N
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2.4 Uniform integrability and convergence in L!

2.4.1 Definition and examples

Definition 2.28. Let (2, F,P) be a probability space, {X; : i € I} be a collection of random

variables on (92, F,P), we call they are uniformly integrable (UI) if

lim (SH?E(’XZ'|IL{|X1-|>M})> =0
1€

M—o0
Proposition 2.29. {X; :i € I} are Ul if and only if
(1) L' bounded: sup;c; E(|X;]) < oo

(2) uniform absolutely continuous: for any e > 0, there exists 6 > 0 s.t. for any A € F with
P(A) < 9§, we have

sup E(|X;|14) < e.
iel

Proof. =>: Suppose {X; : ¢ € I} is UL. We can find M > 0, s.t.
Silel?E(’Xi‘ﬂﬂXibM}) <1
then for any i €
E([Xi]) = E(1Xa|1gx, <)) + E(Xi|1gx,503) < M+ E(1X6[ Ty x,50n) <M+ 1,

thus sup;c; E(]Xi]) < M +1 < oo. (1) is proved. Then we will prove (2). Take € > 0, we can
find M > 0, s.t.

)

| ™

SU?E(|Xi‘1{|Xi\>M}> <
1€
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then take § = ﬁ, for any A with P(A) < §, we have

sup E(|Xi|1a) = sup E(|X;|Lalyx,<ary) +sup E(|Xi|1alg x> 0r))
iel iel iel

< SUII)E(MHAH{IXiISM}) + SU?E(|Xi|]1A]1{|X¢I>M})
1€ 1€

< MP(A) + g

< M-+

S,
oM 2 T

<=: Suppose (1) and (2) hold. Take C' > 0 to satisfy sup,;c; E(|X;|) < C < co. For any
e >0, take § from (2). Let N = g, then

E(|X; :
P(X;| > M) < (|M ) <6, Viel,
by (2),
sup E(|Xi|1qx;/>ary) <,
i€l
from the ¢ — ¢ definition, we have sup;c; E(|X;|1{x,>a) — 0 as N — oo, L

Lemma 2.30. If X € L', then
1. for any € > 0, there exists § > 0 s.t. A€ F with P(A) < implies E(|X|14) < e.
2.

lim E(|X’ﬂ{|x‘>M}) =0.

M—oo

Example 2.31. Let 0 < C' < oo be a constant, then {X,,} with |X,,| < C are UL

Proof. Take M = C, then E(|X,|1ix,>an) =0 for all n. ]

Example 2.32. Suppose {X1, Xo,---, X,,} are all in L', then they are also Ul
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Proof. First they are L! bounded. Second, for any € > 0, by Lemma 2.30, we can find §; > 0,
s.t. P(A) < 6; implies
E(|X;|14) <e.

Thus take 6 = min{dy,---,d,}, we have P(A) < ¢ implies
E(|Xi|14) <e, Vie{l,---n},

s.t. sup; E(|X;|14) < . By Proposition 2.29, {X;} is UL []

Example 2.33. Let U be a r.v. with uniform distribution on [0, 1], define
Xn = nlwely,
then E(|X,|) = 1 for all n, thus they are L' bounded, but for any M > 0,
E(|Xnll{x,>0) =1, Vn > [M]+1,

thus they are not UL

Example 2.34. Let X be integrable r.v., then {Y;,} with |Y;,| < |X| are UL

Proof. Since {|Y,| > M} C {|X| > M}, as M — oo,
sup E(|Ya|1gy, > ay) < E(X[1gx>03) — 0. [

Example 2.35. Let {X,,} be Ul then {Y,,} with |Y,| < |X,| are also UL

Proof. Since {|Yy,| > M} C{|X,| > M}, Lyy, sy < Lyjx,|>my, then as M — oo,

sup E(|Ya|1qy,>ary) < sup E(|Xn |1 x,>a) = O. O
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Example 2.36. Let {X,,} and {Y,,} both be UI, then {X,, + Y, } are also UL

Proof. As M — oo,

sup E(|Xn + Yall{x,+v,>Mm}) < sup E((|Xn| + Yo Lg X, |+vo > 0})
= sup E(| X0 1 x, |+ 1v,>03) + sup E(Yn|L{x,|4Ya|>M})
< S%pE<|Xn|l{|Xn|+supn Yo >M}) + Sup E(Yal1{jy, | +sup,, [Xa|>M})
= sup E(|Xnllx,|>m-a}) + sup E([Ya|lgy, sm-By) = 0,
here we let A = sup,, |Y,| < 0o, B = sup,, | Xy,| < oc. ]
Example 2.37. Let F,, C F be sub-o-fields, X € L, then {E(X|F,) : n > 0} is UL

Proof. Let Y,, = E(X|F,) € F,. For any € > 0, our goal is to find M > 0, s.t.
E[|Yn|1{\Yn|>M}] <e, Vn.

By Lemma 2.30, since X € L', there exists § > 0, s.t. P(A) < ¢ implies E(|X|14) < . By
Jensen’s inequality, |Y,| < E(|X]|F,), then

(Yo Ly, say) < EE(X|[F) Ly, >3]
< EE(X]|Fn) Lig( x5 > M}

= EHXHL{IE(|XH]:”)>M}] (deﬁnition of E(‘XH./_"”))

where

EE(X]F)] _ E(X])

<
P(E(X]|7) > M) < (X XD
if we take M = [E(]X|)/0] + 1. Thus
E[lYo Ly, >an) < Bl X|Lggx)F)>my) <& Vn. O
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Remark. {F, : n > 0} does not need to be increasing or decreasing.

Proposition 2.38. {X,, : n € I} are Ul if and only if there exists a measurable function

¢ :]0,00) — [0,00) s.t.

and

sup E[p(|Xn|)] < 00
nel

Proof. <=: First there exists M € [0,00) s.t. for all i,

Elp(|Xal)] < M

Then by limg a0 ‘p( ) — 4o, for any k € Z., there exists Cj > 0, s.t.
o(z) > kMz, Vx> C.
Therefore, for any n € I,
M = Elp(|Xa])] = Ele(IXn) Lyix,>c0] 2 EME[Xn[1)x, 1> 0,3,

then we have
1
sup E[| Xn |1 x, >0 < T
nel

For any € > 0, just choose k = [1/¢] + 1, take N = C}, > 0, we have

1
Sléli;EHX nllix, >Ny = SUPEHX Lxa>0] < 7 <

=: Omitted. O]

Corollary 2.39. Forp e (1,00), let {X,, : n € I} with sup,,c;|Xn|P < 0o, then they are UL
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Proof. ¢(x) = aP satisfies

lim @ = lim 277! = 400,
T—00 X T—r00
and sup,,c; ¢(|Xy|) < oo, thus it is proved by Proposition 2.38. L

2.4.2 UI and convergence

Lemma 2.40. If X,, — X in probability, then there exists a subsequence { Xy, : k > 0} s.t.
Xn, — X as.

as k — oo.

Lemma 2.41. Suppose X,, > 0 and X,, — X in probability, then

E(X) <liminfE(X,).
n—oo

Lemma 2.42 (Bounded convergence theorem). Suppose X,, < K < oo for all n > 0, and

X,, = X in probability, then X,, — X in L'.

1
m
1
implies | X — X,,| > —, i.e.
m

1 1
P(X|> K+ —)<P(X,—X|> ) =0, asn— oo.
m m

Let m — oo, we have P(|X| > K) =0, i.e. |X| < K a.s. For any ¢ > 0,

E([Xn — X) = E(|Xn — X[1f1x,-x)>251) + E( X0 — X[1gx,-x)<5})
< 2KP(| X, — X| > §> + g (since | X, — X| < [Xn| + |X] < 2K a.s.)

— =, asn — oo.

DO ™
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Let ¢ — 0, we have E(|X,, — X]|) — 0. ]

Theorem 2.43. Let {X,, : n > 0} be a sequence of r.v. with X, € L', and X,, — X in
probability, then TFAE:

1. {X,,:n>0} is UL
2. X,, — X in L';
3. E(|X,]) — E(|X]) < c0.

Proof. 1 = 2. The idea is to truncate X, at K and —K. For K > 0, define

¢k (r) = 2ljjp<kxy + Kls gy — Klp<_ky,

then |ox(r)] < K, ok () — | < |olLusny and o (@) — ox(w)| < |z~ 9l By triangle

inequality, we have

E(1Xn = X]) < E(lpx (Xn) = vx (X)) + E(lor (Xn) = Xa]) + E(lpx (X) = X])

< E(lex (Xn) — ox (X)]) + E(|XnlLx, > x}) + E(X|L{x>K1)-

Take ¢ > 0. For the first term, since |px (X,) — ox(X)| < | X, — X|, for any 6 > 0,

P(lor (Xn) — ¢ (X)| > 0) <P(|X,, — X[ > ) — 0,

which means g (X,) — ¢ (X) in probability, by Lemma 2.42, ¢ (X,) — ¢ (X) in L', so

there exists N(e, K) € Z4, s.t. for any n > N,

E(lpr (Xn) — or(X)]) <

Wl M
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For the second term, since X, is Ul, then for any € > 0, there exists K7 > 0, s.t. for all n

£
E([Xnl1qx,>m3) < 3

For the third term, by Lemma 2.41 and Proposition 2.29,
E(]X]) < liminfE(|X,]) <supE(|X,]) < oo,
n—00 n
therefore X € L'. By Lemma 2.30, there exists K1 > 0, s.t.
€
E(X 1 x>K)) < 3
Taken together, we choose Ky = max{Kj, K2} and N = N(g, Ky), then for all n > N,
E(| X, — X]) <

_|_

ie. E(|X, — X|) = 0.

2 = 3.By Jensen’s inequality and X,, — X in L', we have

[E(1Xn]) — E(X)] = [E(Xn| — [X]] < E([|Xa] - [X]]) < E(JX, — X[) = 0.

33— 1. ]

Theorem 2.44. Let {X,, : n > 0} be a submartingale, then TFAE:
1. at is Ul
2. it converges a.s. and in L';

3. it converges in L'
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Proof. 1 = 2. UI implies sup,, | X,| < oo, thus sup, X, < sup,, |X,| < oo, by martingale
convergence theorem (Theorem 2.14), there exists X € L! s.t. X,, — X a.s., then X,, = X
in probability. By Theorem 2.43, X,, — X in L.

2 = 3. Trivial.

3 = 1. Convergence in L' implies convergence in probability, then also by Theorem 2.43,

{X,, :n >0} is UL O

Lemma 2.45. If X, € L', and X,, = X in L', then
E(Xpla) —» E(X14).

Proof.

E(Xnla) —E(X14)| = |E(Xnla— X14)|] <E(| X, 14— X14])

- E(|Xn - X|]1A) < E(|Xn - X|) — 0.

]

Lemma 2.46. If X,, is a martingale w.r.t. F,, and X, — X in L', then X, = E(X|F,).

Proof. By the property of martingale, for any integer m > n, E(X,,|F,) = X,,. By the
definition of E(X,,|F,), for any A € F,,

E(X;nl4) =E(X,14).
Since X,, — X in L', by Lemma 2.45,
E(X14)= lim E(X,,14) = E(X,14), VAE F,.
m—0o0

Since X,, € F,, by the definition of E(X|F,), we conclude X,, = E(X|F,). ]
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Theorem 2.47. Suppose X,, is a martingale w.r.t. F,. Then TFAE
1. Itis Ul

2. It converges a.s. and in L'

3. It converges in L

4. There exists a r.v. X € L' s.t. for anyn >0

E(X|]:n) = X,

Proof. 1 = 2 = 3 is copied from Theorem 2.44.
3 = 4. From Lemma 2.46.

4 = 1. From Example 2.37. [l

Theorem 2.48. Suppose F,, T Fwo, i.€. Fo C F1 C -+ are sub-o-field, and Foo = o(UpFy).
If X € L', then
E(X|F,) = E(X|Fs) a.s. and in L'.

Proof. By Example 2.4 and Example 2.37, M,, = E(X|F,) is a martingale and UI. Thus
Theorem 2.47 implies there exists M € L' s.t. M, — M a.s. and in L'. The only thing is to
show M = E(X|Fx). Lemma 2.46 implies

E<X|Fn) = M, = E(M’}—n>7

thus for any A € F,,
E(X14)=E(M,14)=E(MI1y,).

Therefore E(X14) =E(M1,4) for all A € U,F,. Define

C={AcF:E(X1,) =E(MI1,)},
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then C is a A-system and U, F, C C. By m — A theorem, we have
Foo = U(Unfn> C Ca

ie. E(X14)=E(M1y,) for all A € UpFs. And M € Fy (Since each M, € F, thus their
limit M € Fu), we have M = E(X|Fx). O

Theorem 2.49 (Lévy’s 0-1 law). Suppose F, T Fxo, and A € Foo, then
E(Lag|Fn) = 14 a.s.
Proof. Let X =14 € Fo in Theorem 2.48, we have
E(14|F,) = E(14|Fs) =14. as. ]

Corollary 2.50 (Kolmogorov’s 0-1 law). Suppose {X,, : n > 1} are independent random
variables, define tail o-field by

T = ﬁ o(Xm,m >n),

n=1

then for any A € T, P(A) € {0,1}, d.e. T is trivial.

Proof. Define F,, = 0(X;,, 1 < m < n), then for any A € 7 and any n € Z; A is independent
of F,, because A € o(Xy,,m > n+ 1) and o(X,,, m > n + 1) is independent of F,. Thus
E(14|Fn) =E(14) =P(A). By Lévy’s 0-1 law,

P(A) =E(La|Fn) — 1a  a.s.

therefore P(A) € {0,1}. O
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2.5 Backward martingale

Definition 2.51. Suppose {X_,, : n > 0} is a sequence of r.v. w.r.t. F_, with F_,, C F_,11.

We call {X_,, : n > 0} a backward martingale if Xo € L' and for any n > 1,

E(X,n+1yffn) - an-

Lemma 2.52. Suppose {X_,, : n > 0} is a backward martingale. If Xog € LP for some p > 1,

then X_,, € LP for alln > 1.

Proof. By Jensen’s inequality,

[ Xl = [E(X 1 [Fn) [ S E(IX g [P[Fon),

thus
E(X_n?) <E(|X-ns1/P).

By induction, E(|X? | <E(|X(|P) < oo for all n > 1. O

Theorem 2.53. There exists X_o € L s.t.

X_,—X_ & a8 andin Ll,

as n — 0Q.

Proof. 1. Let U, be the number of upcrossings of [a,b] by X_,,---, Xy. Then upcrossing

inequality 2.13 implies

(b— QE(Uy) < E[(Xo - a)] — E[(X_, — a)"] < E[(X0 — )],
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Since U, 1T Uy, by monotone convergence theorem,

E(Us) = lim E(U,) < E[(Xo — a)"] < oo,

n—oo

thus Uy < oo a.s. By the similar argument in the proof of Theorem 2.14, X_, exists a.s.
hence also in probability.

2. For any n € Zy, X_, = E(X|F_,). Since Xy € L', by Example 2.37, {X_,, : n > 0}
is UL. By Lemma 2.52, X_,, € L' for all n > 0, then Theorem 2.43 implies X_,, = X_ in
L. O

Theorem 2.54. If backward martingale {X_,, : n > 0} has Xy € LP, then as n — oo,
X p—X_inLP.

Proof. 1. By Theorem 2.53, as n — oo, X_,, =& X_ a.s.

2. By the Theorem 2.24, for any n > 0, we have

B[ s Xl s(}%)pmx@mm.

—n<m<0

3. Since (Sup_, << | Xm|)? T (sup,>0 | X—n|)?, by monotone convergence theorem,

E [<suprx_n\>p] ~ lim E{( sup |Xm\>p] < (%)pﬂzuxom <o,

n>0 —n<m<0

thus sup,,~o [X | € LP.
4. Since

| X _oo| = limsup |[X_,| <sup|X_,| a.s.
n>0 n>0

and |X_,| < sup,>q|X_p|, we have

| X — X oo <X ] + X 00| < ZSuI(‘)) | X_n| € LP, a.s.
n>
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Then since | X_,, — X_o| — 0 a.s., by the LP dominated convergence theorem,

lim E(|X_, — X_oofP) = 0. O

n—oo

Theorem 2.55. Let Fooo = (oo F-n- Then
1 X = B(Xo|F o).

2. For any X € L', as n — oo,

E(X|F_n) = B(X]F_o0).

Proof. 1. We only need to show (i) X_o € F_ and (ii) for any A € F_,
E(X_ool4) =E(Xo14). (1)

(i) can be checked by showing {X_~ < ¢} € F_, for all n > 0. For (ii), since X_, =
E(XoF-,), we have for any A € F_ C F_,,

E(X_,14) =E(Xola).
Then (1) holds from Lemma 2.45 and X_,, — X_ in L. O

2.6 Optional stopping theorem

For submartingale X, it is obvious E(X,,) > E(Xp), but this is not always true for X when
N is a stopping time. Optional stopping theorems are talking about when E(Xy) > E(X))
holds.

Theorem 2.56. Suppose X,, is a submartingale, N is a stopping time, and N is bounded

i.e. P(N <k)=1 for some k < oco. Then E(Xy) > E(Xp).
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Proof. See Lemma 2.20. []

Lemma 2.57. X,, is a submartingale, N is a stopping time. If Xynp is Ul then E(Xy) >
E(Xo).

Proof. By Proposition 2.12, Xy, is a Ul submartingale, by the property of submartingale,
E(Xo) = E(Xnn0) < E(Xnan)-
By Theorem 2.44, Xyan — X a.s. and in L', thus
E(Xy) —E(Xo) = E(XNy — Xnan) + E(Xvan) — E(Xo) > E(Xy — Xvan) — 0. N

Lemma 2.58. X, is a Ul submartingale, N is a stopping time, then Xyn, @s UL

Proof. 1. X;I is a submartingale.
E(X 1 Fn) > E(Xpq1]Fn) > X
2. N An <n, then by Lemma 2.20,

3. |X,f| <|X,| and Example 2.35 implies that X, is also UL

4. By the property of UI and Step 2,
supE(X7 ) <supE(X,) < oco.
n n

5.By Martingale convergence theorem (2.14), Xya, — Xy a.s. and E(|Xy|) < co.
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6. prove Xyap, is UL For any M > 0,

E(XNAn| L xynnl>0ry) = E(XNI L xy s Liveny) + E(Xn|Lyx, >0y Livsny)

< E(XN|Lfxy>an) + E(Xnl Ly x, > 00)-

Take € > 0. For the first term, since E(|Xy|) < 0o, by Lemma 2.30, there exists M; > 0 s.t.

E(XN[Txy>an)) <

DN ™

For the second term, since X,, is Ul, then there exists My > 0 s.t.

9
SUPE<|Xn’1{|Xn|>M2}) < 2
n

Therefore for M > max{ M, M},

€ £
sUp E(|Xnan[Lxna>my) <5+ 5 =€
n

which implies Xypp is UL []
Theorem 2.59. Suppose X,, is a Ul submartingale, N is a stopping time. Then E(Xy) >
E(Xp).

Proof. By Lemma 2.57 and 2.58. [l

Actually, from Lemma 2.58, we can use a weaker assumption than the above UI condition.

Theorem 2.60. Suppose X,, is a submartingale, N is a stopping time. If E(|Xy|) < oo and
Xonlinspy @8 UL then Xy is Ul and hence E(Xy) > E(Xp).

Theorem 2.61. Suppose X,, is a submartingale, N is a stopping time. If the following two

conditions hold:
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1. there exists B > 0, s.t.
E(| Xpnt1 — Xpl|Fn) < B as.
2. E(N) < o0
then Xnnp is Ul hence E(Xy) > E(X)).

Proof. 1.By Proposition 2.12,
n
XN/\n = Xo + Z(Xm - Xm—l)l{sz}a
m=1
thus
n [e.e]
Xl < 1X0l + D 1Xm = X1 Linsm) < 1Xol + D [ Xm = X1 Linsm) = V-
m=1 m=1

2. We only need to prove E(|Y]) < oo, then by Example 2.34, Xy, is UL Notice that

E(|Xm - mflmNZm) = E[E(‘Xm - mle}—mfl)ﬂNZm]
< ]E(Bﬂsz)

= BP(N > m),

then by monotone convergence theorem and tail sum formula,

E ) 1Xm = Xmalliysmy | < B Y PN >m) = BE(N) < o,

m=1 m=1

thus E(|Y]) < oc. L

Application

Theorem 2.62 (Wald’s equation). Let Sy =0, S, = & + -+ - + &, where & are independent
with E(&) = p. If N is a stopping time with E(N) < oo, then E(Sy) = pE(N).
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Proof. Let X,, =S, —nu, then X,, is a martingale. Noticing that
E(|Xn+1 — Xal[Fn) = E(|€nt1 — plFn) = E(|€ns1 — ),
then by Theorem 2.61,
0 = E(Xo) = E(Xy) = E(Sy — Npx) = E(Sy) — uE(N). =

We also show Wald’s second equation here although the proof doesn’t apply any optional

stopping theorem.

Theorem 2.63 (Wald’s second equation). Let So =0, S, = &1+ -+ + &, where & i.i.d. with
E(&) =0 and Var(&) = o2. If N is a stopping time with E(N) < oo, then E(S%) = 0c*E(N).

Proof. Let X,, = S? —no?, then X, is a martingale and so is Xyn,. Thus
0=E(Xnn0) =E(Xyrn) = E(S%,,) — 2E(N An). (1)

Since N An 1 N, by monotone convergence theorem, we have E(N An) — E(N). By (1), we
have E(5%,,) = 0?E(N An) < 0?E(N) < oo, thus

supE(S% ) < o’E(N) < oo.

Since S, is a martingale, by L? convergence theorem (Theorem 2.25), Syan — Sy a.s. and

in L2. Therefore

11Snanllz = ISxll2ll2 < [[Shan — Snll2 = VE[(Snan — Sn)?] — 0,
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ie. E(S3

2 an) — E(S%). Taken together, we have

0= lim [E(S%,,) — 0’E(N An)] = E(S%) — ¢°E(N). O
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3 Markov Chain

3.1 Construction of Markov chain

Definition 3.1 (Transition probability). Let S be a non-empty set, S is a o-field on S. We

call p: S x & — [0,1] is a transition probability if
(1) For any fixed point z € S, p(x,-) : S — [0, 1] is a probability measure on (S,S).
(2) For any fixed set A € S, p(-,A) : S — [0,1] is a S-measurable function.

Definition 3.2. Suppose {X,, : n > 1} is a r.v. sequence on (S,S) w.r.t. Fp, i.e. X, € F,.

We call X, is a Markov chain with transition probability p, if for any B € S,
P(X,+1 € B|F,) = p(Xy, B).

Theorem 3.3. Suppose (S,S) is a measurable space with S C R, p is a transition probability
on (S,S), p is the initial distribution on (S,S). Then we can define the probability measure
P, on (S™,S8™) by

Pr(B) = /BO (/31 e (/Bn p(Tn—1, dl’n)) -+ p(o, dxl)) p( dzo)
-/ () / plro. o) /| i, do)

where B = By X By X --- x B, € S™. It is easy to show that P,, n > 0 are consistent.
By Kolmogorov’s extension theorem, there exists a unique probability measure P, on (2, F) =

(SN, 8N, s.t. for anyn € N and B = By x By x --- x B, € 8", we have
Puw : (w1, ,wy) € B) =P,(B).
Now we extend P, from the space of finite products to that of countable products. Define
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Xn:Q— S by

w=(wo,* ,Wn, ") > Wp.
Frn=0(X;:1<i<mn). Then X, is a Markov chain w.r.t F, with transition probability p.

Proof. 1.We only need to show for any B € S,
P(Xn+1 € B|Fn) = p(Xn, B). (1)
From the construction, we have
P(Xni1 € BlFn) = Pu(wnt1 € BlFn) = Eu(Liy .0, pre8Fn)-
To show (1) holds, only need to prove
By (L innes) ) = plons B), Vo = (- i, +) € 2.
By definition of conditional expectation, only need to show for any A € F,,
Eulliw:w,eBylal = Eulp(wn, B)La. (2)

2. We will prove (2) holds for a weaker case first, then apply = — A theorem to prove it holds
forall Ae F,. Let A={Xo€ By, -+, Xp € Bp} ={w : wg € By, - ,wn, € By} € Fy, then

Eu[ﬂ{w : wn+1€B}1A} = E/A[ﬂ{w :wo€Bo, ,wneBn,wn+1€B}]

:Pu(w two € By, ,wpn € Byp,wpt1 € B)

:/Bou(d:vo) /Blp(xo, d$1)---/Bnp($n—1, dxn)/Bp(asn, dzni1)
:/Bou(dxo)/ (o, dml)--'/Bnp(flfn—L dzn)p(2n, B)
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And

Eu[p(wn,B)]lA] :/Qp(wmB)]l{w:woeBo,n-,wneBn} d]pﬂ'

To show the above two items are equal, we can do it first for the indicator, then simple

functions and finally any bounded measurable function. Let C' € S, then

EM[HC(WR>]1A] = Eu[ﬂ{w:woeBmm,wneBnﬂC}]
=Pulw : wo € By, ,wp € ByNC]

=P,[By x By x --- x B, NC]

- [ wtam) [ stoocary [ plan g
— /Bou(dxo) /Blp(xo, dzy) - --/Bn P(@n—1, dzn)Lo(@n)

Then by linearity, for any simple function f, we have

Bl o)1) = [

B

M(dmo)/B p(zo, dzy) - - '/B p(Tn-1, dzy) f(2n), (3)

By the bounded convergence theorem, (3) also holds for any bounded S-measurable function,
particularly for p(z, B).
3. Now we will prove (2) holds for any A € F,,. Define

C1 ={A € F,: (2) holds},
easy to verify Cy is a A-system. Define the set of rectangles

Co={{w: wy € By, -+ ,wn € Bp}:B; €S,0<i<n},

o4



Notes Huarui Zhou Probability

Cs is a w-system, and Cy C C; by Step 2. Then by m — A\ theorem,
Fn=0(C2) CCy. n

3.2 Properties of Markov chain

We will keep using the notations in the last section. (2, F,P,) is the probability space
induced by the state space (5, S), transition probability p and initial distribution p. X, (w) =

wy, is the Markov chain.

Theorem 3.4 (Monotone class theorem). Suppose A is a w-system containing Q, H C {f :

Q — R} and satisfies
(1) Ae A implies 14 € H
(2) If f,gyec H then f+g€eH;if ce R and f € H, then cf € H

(3) If fa € H, fu =0, and fo 1 f. then f € H.

Then {f: Q=R : f<oo, fea(A)} CH.

Proof. 1. Claim: G = {A €29 : 1,4 € H} is a A-system.

By(1), 2 € ACG. Suppose A, B € Gand A C B, then 14,15 € H, by (2), 1p\a = Ip—1a €
H,so B\ A€ qG. Suppose A, € G and A, 1 A, then 14, € H and 14, T A, by (3), 14 € H,
thus A € G.

2.Since A C G and A is a m-system, by m — A theorem, o(A) C G.

3. Thus for any A € 0(A), 14 € H, and by (2), any simple function f € o(.A) belongs to H.
For any bounded o(.A)-measurable function f, there is a non-negative f,, s.t. f, 1 f, thus by

(3), feH. O

Proposition 3.5. Suppose X, is a Markov chain with transition probability p.
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1. For any bounded S-measurable f,

E(f (X1)|F) = / P(Xns dy)F(y) (1)

S

2. For any bounded S-measurable fp,,
I Lgﬂfm(Xm)] :/S/i(dl'ﬂ)fO(on)/sp(ilfo, dl‘l)f1(9€1)~~/sp(xn1, dzy) folzn). (2)

Proof. 1. First S is a o-field, thus a 7-system. Define H = {f : Eq(1) holds for A := S},

then H satisfies the three conditions in Theorem 3.4: i) for any A € S,

E(La(Xns1)|Fn) = E(Xns1 € A[Fn) = p(Xn, A) = / p(Xn, dy)TLa:
S

ii) obviously iii) by monotone convergence theorem. Thus H contains all bounded S-
measurable function.

2. First, (2) holds for n = 0, since

E(fo(Xo))Z/gfo(xo)M(dxo)-
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Suppose (2) holds for n — 1, then by the property of conditional expectation,

Hfm

(i)

H (X)) E (fn(Xn)]}"nl)] (since f(X,) € Fp—1 for m <n—1)

H fm(Xm)/Sp(Xn—la dy)fn(y)]

H fm(Xm)fn—l(Xn—l)g(Xn—l)] (1et the integral be 9<Xn—1))

L m=0

—/Su(dxo)fo(xo)/sp(ﬁo, dxy) f1(21) /Sp Tp—2, dTn_1) fu—1(Zn-1)g(zn-1)
= [ utdm)fotan) [ ptoo oo [ s, dou) o

Thus (2) holds for all n € N. O

Proposition 3.6. If f : S"*' = R is bounded and S™'-measurable, then

E[f(Xo, X1, X

Y

:/Sf(xg,xl,~~ ,:cn),u(dxg)/sp(mo, dxl)---/sp(xnl, dz,,). (1)

Proof. Let A = {rectangles in S"*'}, H = {bounded and A-measurable f s.t. (1) holds}.

We will show three conditions in monotone class theorem holds. i) for rectangle A = Ay x
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Ag x -+ x A, € A, we have

=P(Xp € Ap, X1 € Ay, , X, € Ay)

= /AO ,u(da:o)/Alp(a:o, dxl)---/Anp(ﬂfn—l, day)
:/S]LAO(xO)M(da:O)/SIlAl(xl)p(xo, d$1)"'/SﬂAn(xn)p($n1, dp)

Z/lA(xoaiﬂl,-" ,!En)u(dxo)/p(l“o, dﬁfl)"'/]?(l’nl, day)
s s s

thus 14 € H. ii) obviously iii) by monotone convergence theorem. Thus by monotone class

theorem, H contains all bounded and o(A) = S"*!-measurable functions. O
Remark. The second result in Proposition 3.5 can be a special case of this proposition.

Definition 3.7. Suppose Q = SN, n € N, we call 6, : Q@ — Q a shift operator if
w = (wo, w1, ) = (W, Wnt1,- ")
Theorem 3.8 (Markov property). Let Y : Q — R be bounded and measurable, then
E, (Y 00| Fn) =Ex,Y.

Remark. Here Ey, Y isar.v., if X;, =z, Ex, Y =E,Y which takes = d(x) in E,Y.

Proof. 1.By the definition of conditional expectation, we only need to show for any A € F,,,
Eu(YoemﬂA) :EH(EXmY]lA). (1)

2. Consider A is a rectangle first, i.e. A = {w : wy € Ag,w1 € A1, -+ ,wm € Ap}. For
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k=0,1,---,n,let g : S — R be bounded and measurable and
Y(w) = ][ orlwr) =[] 9t 0 X (w). (2)
k=0 k=0

Define

/

1a, 0<k<m

fe=9q1a,90 k=m

| Ik—m m <k <m+n,

by Proposition 3.5,

m—+n
E fr(X )] = | p(dxo)fo(xo)
u[kjl;[O k\AE /S 0/)J0O O/

Sp(x()v dxy) fi(wy) - '/p(xm-&-n—la dZmin) frtn(Tman)

S

For the lefthand side,

fm+n

LHS =E | [] ge-m(Xs)
Lk=m

i

k=0
fm+n
-E|]] gkz—m(Xk)]lA]
Lk=m

=E|]] gk(Xk+m)ﬂA]
k=0

= EU(Y 00,1 4).
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For the righthand side,

RHS:/ M(dﬂﬁo)/ p(o, d$1)“'/ P(Tm—1, dxm)go(zm)/p(xm, dzms1) g1 (Tmt1) -+
Ao A A, S

/ p(xm—&—n—l, dmm—i—n)gn(l'm—i—n)
S

— [ wtdan) [ plandon)- [ plner. dedoten)
AO Al Am
=E, (¢(Xm)la), (by Proposition 3.5)

where

©(xm) = go(zm) /Sp(%m dzmi1)g1(Tmer) -+ /Sp(xm—kn—la dZmn) gn(Tman)

— go(rm) /S P, dar)ga (1) -+ / P(Ent, dza)gn(an)

S

H gk(Xk)] (by Proposition 3.5)

Replace x with r.v. X, then we have
gO(Xm) = Emeu

Thus RHS = E,(Ex, Y14). We obtain (1) holds in this case.
3. For Y defined by (2), we will prove (1) holds for any A € F,,. Let

C; = {A €29 : (1) holds on A},
easy to verify that A is a A-system. Define

Co = {rectangles € F,},
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Cy is a m-system and Co C Cq, then by © — A theorem, F,,, = 0(C2) C C1, thus (1) holds for
any A € Fp,.
4. The last step is to prove (1) holds for all bounded and measurable Y. Fix A € F,,, define

H = {bounded and measurable Y: (1) holds},
by Step 3, any form of Y defined by (2) belongs to #. And define
A = {rectangles € F = S},

A is a m-system and Q = SN € A. Furthermore H satisfies all three conditions in Theorem

3.4: (i)for any A ={w:wp € Apg,w1 € A1, ,wi € A} € A,

k

1a= H Iy, €H,
i—1

(ii) obviously (iii) by monotone convergence theorem. Thus by Theorem 3.4, H contains all

bounded and F = o(.A)-measurable functions. O

Theorem 3.9. For any bounded function Y € o(Xi, k > n),
Eu(Y[Fn) = Eu(Y]X0). (1)
Proof. Since Y € o(Xp, k > n), we have Y o 0_,, is bounded and F-measurable, and
Y = (Y 00_,) 00,
By Markov property (Theorem 3.8),

Eu(y|fn) = Eu[(y 0f_p)o 9n|]:n] = EX”(Y 00 _p),
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take conditional expectation on X, (i.e. o(X,)), we have

Eu[Bu(Y[F)Xn] = EuEx, (Y 0 0-n)| Xn],

the left side is E,(Y'|X,,) since o(X,) C F,, the right side is Ex, (Y 00_,) = E,(Y|F,) since
Ex, (Y o6_,) € o(Xy,), thus
Eu(Y|F2) = Eu(Y[X0). =

Corollary 3.10. Let A € F,,, B € o(Xy, k > n), then

PH(A N B|Xn> = Pu(A|Xn)Pu(B|Xn)-

Proof.

P.(ANB|Xy) = Eu(1ans|Xn)
=E,E,(1alp|F,)|Xn] (Since o(Xy,) € Fp)
= Eu[1AE,(1p|Fn)|Xn]  (Since L4 € F)
=E,[14E,(15]X5)|Xn] (By Theorem 3.9)
=E,(14]1X,)E,(15]X,)

= Pu(A[Xn)Pyu(B|Xn).

Remark. The above result shows that the past and future are conditionally independent

given the present.

Theorem 3.11 (Strong Markov property). Suppose N is a stopping time, define

Fn={A:An{N =n} € F, Vn € N}.
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Forn € N, suppose Yy, : Q — R is measurable and sup,, |Y,| < M. Then on {N < oo},
E,(YnoOn|FNn) =Ex, YN

Remark. Ex, Yy(w) is a r.v. and when N(w) =n, Xy(w) = z, it has value E,Y,,.

Proof. We want to show for any A € Fy,
E[YN 0 ONLan{N<oo}] = E[Exy YN Lan{N<oo}]-

Since

[N <o} = | J{N =n}.
n=0
we have

=E[Yn 0 ONT| °  an{N=n)}]

M

E[Yy 0 0n1an{n=n}]

3
Il
=

M

E[Ex, Ynlanin=n}] (by Theorem 3.8 and AN{N =n} € F,)

i
[es)

= E[Ex, YNLan{N<oo})-
n
Theorem 3.12 (Reflection principle). Let {X} : k > 1} be a sequence of i.i.d. r.v. with

P(X}), > 0) = P(X; <0). Let So =0, and forn>1, S, =3 p_, Xi. For any a > 0, we have

IP’< sup Sm2a> < 2P(Sy, > a).

1<m<n
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Proof. Let N =inf{m <n: Sy, > a}, define inf & = co. Notice that

{N <n} ={S, > a for some m <n} = {sup Sy, > a},

m<n
SO

Po(N < n) =Py(sup Spm > a).

m<n
For m < n, define

Yin = 14s,_,.>a}

then Yy, 0 0y, = 14g,>q3- On {N < oo} = {N <n},
Yy o On(w) = 1gs,>a} (1)
and by the strong Markov property,
Eo(Yn o On[Fn) =Egy (Yn). (2)

If x > a, then for m < n,

thus on {N < n},
Egy(Yn) =

DN | —

Since {N < n} € Fy, applying the definition of conditional expectation to (2), we have

1 1
Eo(Yiv 0 OnLin<ny) = Eo[Bsy (YN)Ln<n] 2 Eo[5 Livny] = SPo(NV < n),
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and by (1),

Eo(Yn 0 OnLin<n}) = Eo(1fs,>an{v<n}) = Po({Sn > a} N {N < n}) =Po(Sn > a),

since {S, > a} C{N < n}. H

3.3 Basic concepts of Markov chain on a countable state space

Now consider the Markov chain X,, in a countable state space S.

3.3.1 Multistep transition probability

Lemma 3.13. For any ig,i1,- - ,in € S,
n
PM(XO = io, Xl = ila to ,Xn = Zn) = M(iO) H p(imfla Z.m)-
m=1

Proof. By definition, let By = {io}, B1 = {i1}, - Bn = {in}, then

PN<X0=¢0,X1=z1,---,Xn:m:/ M(dm)/ p(a0, dm)---/ plan_1, dn)
Bo By B

= M(i()) H p(im—la Z'm>‘

m=1
[]

Definition 3.14. For any x,y € S, n € Z,, define p"(z,y) is the probability of starting from

x and getting to y in time n, i.e.
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Lemma 3.15. For any x,y € S, n € Z,

Phry) = > plem)p(an,za)pen-1,y).

1, Tn_1€S

Proof. By definition, then

(X, =) = [ da(cda) /S plag, day)- - [S sy den) [ plrna, do)

s {y}
= bu(w0) Y plro,x1)-+ Y pl@n—2, 20 1)p(Tn-1,9)
To€ES €S Tn_1ES
= Z p(ZL’, xl) ce Z p(l'n—Za xn—l)p(fbn—h y)
€S Tp_1E€S

= Z p(z,z1)p(x1, 22) - p(Tp—1,7).

T, 7$n71€s

Lemma 3.16. For any z,y € S, ke N, n € Z,
Pu(Xktn = y| Xy = x) = p"(2,y).
Proof. By Markov property and Theorem 3.9,

P,u(Xk—i—n = lek) - ]P)M(Xk-i-n = y|Fk) = EM(H{XTL:y}OGHFk) - ]EXk(]l{Xn:y}) - I[DXk (Xn = y)v

when X, = z, we have
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Lemma 3.17 (distribution at time n). For any j € S,
= p(i)p" (i, j)
€S

Proof. By Proposition 3.5,

Theorem 3.18 (Chapman-Kolmogorov equation). Suppose x,z € S, then
Py (Xmtn = 2) ZP Xm=y)P ( n=2),
yes

1.€.

P (w2) =Y (@, y)p" (v, 2).

yes
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Proof.

Py(Xmtn = 2) = Eo(lix,,,,=2))
= By [Ex(1yx,, =2} [Fm)]
= Eo[Bo(Lix, =2} © OmlFim)]
= E;[Ex,, (Igx,=})]  (by Theorem 3.8)
=E;[Pyx,, (Xn = 2)]

= ZPJU(XM = y)Py(X” - Z)
Y

3.3.2 Time of the k-th return

Definition 3.19. For any z,y € S,

1. Define T} to be the time of k-th visit to y, i.e. Ty =0,
T; =inf{fneN:n > T;_l,Xn =y}

and inf @ = oco.
2. Denote T, = Ty1 > 0.

3. Define p,, is the probability of starting from z and getting to y eventually, i.e.
pry = Pu(T) < 00).
Lemma 3.20. Let z,y,z € S, then

Prz = PryPyz-
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Proof. We observe that if a chain can initiate from state = and eventually reach state y, and
it can also initiate from state y and eventually reach state z, then it implies that the chain

can initiate from state x and eventually reach state z. So on {Xy = =}
{Ty < oo} N{T, 007, < oo} C{T, < oo},

thus

prz = Pur(T, < 00)
> P,(T}, 0 O, < 00, Ty < o0)
= Eu[l{1.<o0} © 01, 11, <00}
= Eu[Ey (11, <c0}) L{7, <c0}] (+)
= E,[Py(T> < 00) 147, <00}]

=Py(T: < 00)P,(T) < 00)

= PyzPzxy;

where (x) holds because we can apply the strong Markov property (Theorem 3.11) to get

IFi“‘oc<]l{Tz<oo} o 0r,|Fr,) = EXTy(I]'{Tz<OO}) = IEy(IL{Tz<o<>})v
then use {7}, < oo} € Fr, and the definition of conditional expectation. ]
Lemma 3.21. For x,y € S and x # vy, TFAE,
1. pgy >0
2. p"(x,y) >0 for somen > 1.

3. there exists ig = x,i1,++ ,inp =y S.t. plip—1,iy) >0 for anyr=1,--- n.
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Proof. 1 = 2.Suppose pzy > 0. Then

o0 o0 o0 o0
0 < pay = Pa(Ty < 00) =Pu(| [{Ty =n}) =D P(Ty=n) <> P(Xp=y)=> p"(z,y)
n=1 n=1 n=1 n=1
2 = 3. By Lemma 3.15,
Play) = D plae)p(r, ) plano1,y),
1, Tn 1 ES
thus p"(z,y) > 0 implies p(z, z1)p(z1,22) - - p(¥n-1,y) > 0 for some z, 1, , Tp—1,y.

3 = 1. Since {X,, =y} C{T, < oo},
p"(2,y) = Po(Xn = y) < Po(Ty < 00) = pay,
and by Lemma 3.15,

p"(x,y) > p(x,z1)p(x1,22) - plTn-1,y) > 0,

thus pgy > 0. [
Lemma 3.22. T; : Q1 — N s a stopping time.

Proposition 3.23. PZ(T; < o0) = pxyp’;ljl.

Proof. 1.We will prove it by induction. For k =1, ]P’x(Tyl) = P,(T})) = pay. Suppose it holds
for some k > 2. We will prove it also holds for k + 1.

2.Define

1 if w, =y for some n
Y(w) = 1i1,<o0} =
0 otherwise

Let N = T?f, then Y of =1 if and only if Tf“ < oo (because Oy (w) = (wy,wN+1, -+ ) and
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if the (k + 1)-th return to y happens after N, there must be a n > N s.t. w, =y). Thus

Yoy = 1{T;“<oo}'

3.By the Strong Markov property (Theorem 3.11), on {N < oo},
E.(YofOn|Fn)=Ex,Y.
4.Since N = Tyk, on {N < oo}, Xy =y, then
ExyY =EyY = E(ly1,<x}) = Py(Ty < 00) = pyy.

5. Therefore

P (T4 < 00) = Po({T5* < 00} L (iyveoey) + Pal (TS < 00} 1 (1)
—PL({TE < o0} Tqyany)  (since {THH! < 0o} C {TF < o0} = {N = oc})
=E;[Y olOnT{ncsy]  (by Step 2)
=E;[Ex,Y1{ycooy]  (by Step 3)
= Ez[pyylin<ocy]  (by Step 4)
= Pnyw(T; < o)

= pxypl?jy. (by the induction hypothesis in Step 1)
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3.4 Exit distribution and exit time

Definition 3.24. e For any C' C S, define the hitting time on C as

Vo =inf{n >0: X, € C}.

o Forany A, B C S with ANB = @ , define the probability of exit at set A as P,(V4 < Vp).

Lemma 3.25. Suppose C C S, S\ C is finite, and for any x € S\ C, Py(Vo < o0) > 0.
Then

1. there exists 0 < N < oo and 0 < e <1, s.t. foranyx € S\ C and k € Z,

P.(Tc > kN) < (1 —e)*. (1)
2. Pp(Te <o0) =1 foranyx € S —C.
Proof. 1. Since for any © € S — C, P,(T < 00) > 0, we can find N, > 0, s.t.

P.(Tc < Np) >0,

otherwise
P, (Te < 00) > 0 =P, (| J{Te <n}) <D Pu(To <n) =0.
n=1 n=1

Let N = max,cs_¢ N, then

P,(Tc < N) >0, YzeS—C.

And let ¢ = mingeg_ o Py (T < N), then

P,(Tc < N)>e, VzeS—C.
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Thus
Po(Tc > N) =P,({Tc < N}*) =1 -P,(Tc <N)<1-¢, VreS-C, (2)

i.e. we find N and ¢ s.t. (1) holds for £ = 1. Suppose that (1) also holds for k, we will prove

the case k + 1. By the Markov property,
Ey(Tyr>ny © Oen|Fin) = Exon Lizesny = Px,y (Te > N), (3)

thus

P(To > (k+1)N) = Ex[(Lyros Ny 0 Okn) - Lizesiny]
=E:[Px,y(Tc > N) - Lygeseny]  (by (3) and {Te > kN} € Fiw)
< (1= e)Ex(Igre>kny) (by (2) and Xy € S —CO)
= (1 —¢)Py(Te > kN)

< (1—¢)f*1 (by induction hypothesis)

By induction, we have shown (1) holds for any &k € Z,..

2. Let k — oo in (1), we have P,(Tc = 00) =0, i.e. Pp(To < 00) = 1. O]

Theorem 3.26 (Exit distribution). Suppose A, B C S with ANB =&, S\ (AUB) is finite,
P,(VaAVp <o0) >0 forallz € S\ (AUB). Then h(x) =P,(V4 < VB) is the only solution

of the equation

[ h@) = S pla,ph(y), Vee S\ (AUB),
yes

h(z) =1, Vz € A (1)

h(x) =0, Vz € B.

\

Proof. 1. h(z) =P,(V4 < Vp) satisfies (1).
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For any x ¢ AU B, V4 and Vg must > 1, thus 1y, <y,y 0 6h = Ly, <y, then

h(z) =Py (Va < Vp) = E(l{y,<v,) 0 01)
= Ex[Ex(Lv,<vpy © 01]F1)]
= E;[Px,(Va < V)]
= B (h(X1))

= " p(w,y)h(y)

yeS

2. If h(z) satisfies (1), then Y,, = h(X,av, ;) IS a martingale.

First since h(z) = P,.(V4 < Vp) € [0,1], E(|Y,]|) < 1 < oo. Second, since n A Vaup < n,
Xoavaus € Fn, thus Yy, € F,. Third, we will show E(Y,41|F,) = Y, on both {Vaup > n}
and {Vaup < n}. On {Vaup > n}, Y, = h(X,), thus

E(Yn+1|~7:n) = E(h(Xn—l—l)LFn) = E(h(X1)09n|fn) = Eth(Xl) = Zp(Xnay)h(y) = h(Xn) =Y,.
yesS

On {Vaup < n} € Fn, Yo = WXy, ,) € Fn for any n, thus
E(Yos1|Fn) = E[M(Xv, )| Fn] = MXv,op) = Yo

Now we proved E(Y,,4+1|F,) =Y, and hence Y;, is a martingale.

3. h(z) =P, (V4 < Vp) is the only solution of (1).

Suppose h satisfies (1), then h(x) = E,(h(X7)). Since Y, is a martingale, E;(Y},) = E,(Y1)
for any n. And since © ¢ AU B, V4up > 1, we have Y] = h(X1). Thus

Bz [M(Xnavaos)] = Bz (h(X1)) = (). (2)
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By the Lemma 3.25, V4 p < oo a.s., then let n — oo, (2) becomes

W) = Eg[h(Xvp)]

Next, we will prove Ty, cv,y = h(Xv, ). fw € {w: Va(w) < Vp(w)}, then Xy, , = Xy, €
A, thus

:H‘{VA<VB}(W) =1= h‘(XVA) = h<XVAUB)'

fwe{w: Viw) <Vew)}, Xy, = Xv, € B, then

1{VA<VB}<<’U) =0= h’(XVB) = h(XVAuB>‘

Therefore 1y, v,y = M(Xv,,;), hence

Po(Va < Vi) = Eo(ly,cvpy) = Ea(M(Xvyp)) = (). 0]

Example 3.27 (Wright-Fisher model). Suppose state space is S = {0,1,2,---} and the

transition probability is

Then for any 0 < x < N,
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Proof. Let h(xz) = x/N, then h(N) =1, h(0) = 0, and

Soteamon -3 (M) (5) (-5) 4

yes yeSs

y=1
o TN\ s\ x\ (N-1)-y
N y (N) < B N)
y=0
= < = h(a),
therefore by Theorem 3.26, P,(Vy < Vp) = z/N. N

Theorem 3.28 (Exit time). Let C C S and g(x) = E,(Vi). Suppose S\ C is finite,
P,(Vo < o00) >0 for allz € S\ C. Then g(x) = E; (V) is the only solution of the equation

g(x) =14+ > plx,y)gly), VoeS\C;
yeS (1)

g(x) =0, VzeCl.

3.5 Recurrence and transience

Definition 3.29. 1. Wecally € S

transient if py, < 1.

« recurrent if py,, =1 or equivalently T, < oo a.s.

« positive recurrent if E,(7,) < oo (which implies T}, < oo a.s. thus recurrent)
o null recurrent if it is recurrent but not positive recurrent

 absorbing if {y} is closed.
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2. Define N(y) is the number of returns to y in time n > 1, i.e.

N(y) =Y Tix.—y}-
n=1

Lemma 3.30. For any y € S,

N(y) =Y Lx,=y) = > Lrpeoo)-
n=1 n=1

Corollary 3.31. For any x,y € S,

B NG = 0w o) =3 prsly
n=1 n=1

Lemma 3.32. Let y € S, TFAE

1. y is recurrent
2. Py(Xp=yio)=1

3. Ey[N(y)] =

Proof. 1 = 2. Since py, = 1, by Proposition 3.23, IP’y(T;: < o0) = p’yfy

therefore
o0

Py(Xy = yi0) =P, (({Ty <oo})=1.
k=1

=1forall k € Z;.

2= 3. Py(X,, =y i.0.)=1implies IP)y(Té€ < o00) =1 for all k € Z,, thus by Corollary 3.31,

3 == 1. Suppose p,, < 1, then

N P
E, N =Y Py(TF <o0) =Y i = P < oo
k=1 n=1

L — pyy

7
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leading to a contradiction! ]

Example 3.33. Figure 5 shows a 4-state Markov chain. We have

P11 = 1—P1(X1 :2,X2:3) 20.52, P22 = 1—P2(X1 :3) 20.2, P33 = P44 = 1,

thus state 1 and 2 are transient, state 3 and 4 are recurrent. Since

pr2=1-P1(X, =1,VneZy)=1,

we have

0.4

0.8

Figure 5: A 4-state Markov Chain

Proposition 3.34 (Recurrence is contagious). If x is recurrent and pgy > 0, then y is

recurrent and pyz = pgy = 1.

Proof. 1.The case y = x is trivial. Suppose y # z. Since p, > 0, by Lemma 3.21, there

exists n € Zy s.t. p"(z,y) > 0. Let k = inf{n € Z; : p"(z,y) > 0}, also by Lemma 3.21,
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there exists a state sequence y1,v2, - ,yr_1 S.t.

p(z,y1)p(y1,v2) - - p(Yr—1,y) > 0.

2.Define h: Q — R,

1 ifwy#x VkeZy
h(w) =

0 else,

obviously, h = 147, 1. By Markov property, we have
Eo(h( X, Xpg1, -+ )1 Fk) = Ex [(Xo, X3, -+ )],
then for A = {X1 =y, , Xpm1 = Yp—1, X = ¥y} € Fi,
Eo(M(Xp, Xpt1, -+ )1a) = Eo[Ex, [A(Xo, X1, - -+ )[14],
the LHS is
Eo[li7,—ooyla] = Pu X1 =91, Xim1 = Y1, Xy = y, T = o7
the RHS is

E.[Ey[h(Xo, X1, - )]1al = Ey(h)Ez(1a) = Py(Ty = 00)Pu( X1 = y1, -+, X1 = Yk—1, Xk = V).
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Therefore,

1 — pyz = Py(T = o0)
>Pu(Xi=y1, s X1 = yp—1, Xi = 4, T = 0)
=Py(Ty = 00)Pp(X1 =91, , X1 = U1, Xp = ¥)
= (1 = pya)0(, y1)P(y1, y2) - - - P(Yk—1,9),

thus pyz = 1 implies py, = 1.

3. Since py; = 1 > 0, by Lemma 3.21, there is an | € Z, s.t. p!(y,z) > 0, then by Theorem

3.18,
I+n+k l n k
Py, y) = Py, 2)p" (, 2)p" (2, ).
By Lemma 3.31, we have
o o
Zp y.y) > Z Ry, y) > Py, o) (e y) Y p" () = oo,
n=1 n=1

however Y >, p"(x,x) = E,[N(z)] = oo by Proposition 3.32. Thus E,[N(y)] = oo, and by

Proposition 3.32 again, y is recurrent. [

Definition 3.35 (communication). Suppose z,y € S, x # y, we say x communicates with y

it pzy > 0 and py; > 0, denoted as = <+ y. Define x always communicates with itself.
Definition 3.36. Let C' C S be a non-empty set. We call C
o closed if z € C' and p,y > 0 implies y € C, or equivalently, z € C', y ¢ C implies p,, = 0.
e irreducible if z,y € C implies = <> y.

We call a Markov chain (or transition proposition p) to have some property (recurrent,
transient, irreducible, closed,...) if S has such property.

Lemma 3.37. For any x,y € S, x £y, if x <>y, then py, > 0.
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Proof. By Lemma 3.20,

Pz = PryPyz > 0. [

Corollary 3.38. Let x € S. If C, = {y € S : pyy > 0,pye > 0} is not empty, then

Cr={yeS:y+a}

Proposition 3.39. 1. < is an equivalence relation.
2. S can be partitioned into equivalence classes of <.

3. Fach equivalence class is irreducible.

Proposition 3.40. Any equivalence class C C S of < is either recurrent or transient.

Proof. By Proposition 3.39, C' is irreducible. If |C] = 1, there is only one state, so either
recurrent or transient. Now assume |C| > 2. For any z € C,

Case 1: z is recurrent. Then for any y € C, pyy > 0, by Proposition 3.34, y is also recurrent.
Thus all states are recurrent.

Case 2: z is transient. If there exists y € C, y # x is recurrent, then by Case 1, x is also

recurrent, which is a contradiction. So all states are transient. ]

Remark. This shows recurrence and transience are class property, i.e. if one state in an
equivalence class is recurrent (or transient), then all states in such class are recurrent (or

transient).

Lemma 3.41. If C C S s closed, for any x € C, we have
P.(X, € () =1,
1.€.

> Py =1

yel
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Proposition 3.42. Suppose a non-empty set C C S s finite and closed.
1. C contains a recurrent state.

2. All recurrent states in C' are positive recurrent.

3. If C is irreducible then all states in C' are recurrent.

Proof. 1.Suppose no state in C' is recurrent, i.e. for any y € C, p,y < 1, then by Proposition
3.32,

EoN(y)] = 12— < o0,
vy

since C' is finite, we have

S EN@) < .

yel

However, by Fubini’s theorem and Lemma 3.41,
o0 o o
D EANWI=D D My =D ) play) =) 1=oc.
yel yeC n=1 n=1yeC n=1

2.
3.If C only has one state, then by 1, it is recurrent. If C' has more than one state, there
exists a recurrent statexr € C. For any y € C and y # x, since X is irreducible, then p;, > 0.

By Proposition 3.34, y is also recurrent. ]

Corollary 3.43. If an irreducible Markov chain has finite states, then it is recurrent.

Proof. Obviously, S is closed, thus this follows directly from Proposition 3.42. [l

Proposition 3.44. Suppose S is finite, x € S.
1. If there is ay € S, s.t. pgy >0 and py, =0, then x is transient.

2. If any y € S with pyy > 0 also has py, > 0, then x is recurrent.
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Proof. 1. Suppose z is recurrent, since p,, > 0, then by Proposition 3.34, we must have
pyz = 1.

2. Co ={y : pey >0} ={y: 2 & y}. Then C, is the equivalence class containing x, thus
C, is irreducible by Proposition 3.39. C, is also closed. If C, = S, it is obviously closed;
If C, € 8, lety e Cp, 2 ¢ Cp with py, > 0, then by Lemma 3.20, pz. > paypy. > 0, which
means z € C. It is a contradiction, so p,, = 0 and C; is closed. By Proposition 3.42, C;, is

recurrent. Thus z € C, is recurrent. ]

Lemma 3.45. Suppose the equivalence class C' C S is recurrent, then it is closed.

Proof. S is trivially closed, now suppose C' C S. Let x € C'and y € S\ C, if pyy > 0, then by
Proposition 3.34, py, > 0, thus = <+ y, which implies y € C, it is a contradiction. Therefore

pey = 0, i.e. C is closed. [

Theorem 3.46 (Decomposition theorem). Let R be the set of all recurrent states. Then R

can be written as the disjoint union of R; where each R; is irreducible and closed.

Proof. By Proposition 3.39 and Lemma 3.45. [l

Proposition 3.47. Suppose p is irreducible and recurrent. u is the initial distribution, then
foranyy e S,
P.(T, < o0) =1.

Proof. For any x € S, by irreducibility, py~0, then by Proposition 3.34, p;, = 1. Therefore,

P.(T, < o0) Z,u +(Ty < 00) Zu(x):

€S T€eS
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3.6 Recurrence of simple random walk

In this section, we consider the simple random walk on Z¢. Define {X; : i > 0} are i.i.d. r.v.
with

P(X; =¢j) =P(Xi = —¢;) = 50

where e; is unit vectors on 7. Let S,, = Z;Zl Xi, So = 0, obviously {S,, : m > 0} is a

Markov chain on state space Z starting from 0.

Theorem 3.48 (Stirling’s formula).

n
n!l ~vV2mn <2> )
e

Theorem 3.49. 0 is recurrent state for {Sy, : m > 0} in d < 2 and transient in d > 3.

Proof. Let pg(m) = P(S,, = 0), then pg(m) = 0 if m is odd. And by Lemma 3.32, 0 is
recurrent if >0 pg(m) = oo, and transient if > ps(m) < oco.
1. d = 1. For 2n steps, So, = 0 means there are n left steps and n right steps, so

oo = () - 2 L

thus
00 00 1
S mien) ~ 3 moe
n=1 n=1 n

2. d = 2. Similarly, to make Sy, = 0, there should be m up steps and m down steps, n —m

left steps and n — m right steps for some 0 < m < n. Then

n

pa(2n) = Z m!m!(n —<2777z))!!(n — m)!(i)m(i)m(i)n—m(l)n—m = [pr(20)" ~

m=0

84



Notes Huarui Zhou Probability

SO
o0 [0.9] 1
Zpl(Zn) ~ — =
™m
n=1 n=1
3.d=3.

3.7 Periodicity
Definition 3.50. Let € S be a state.

1. I, is the set of positive time n that makes p"(x,z) > 0, i.e.

I, = {n € Zs : p"(w,2) > O);

2. Let d, be the greatest common divisor of I, (If I, = @ ie. p(z,z) = 0, we define
d, =0). We call d, the period of z.

3. We call z is periodic if d, > 1, aperiodic if d, = 1.
4. We call the Markov chain aperiodic if all states are aperiodic.

Proposition 3.51 (period is a class property). Let z € S with d, > 0, C, is the equivalence

class containing x, i.e. Cp, ={y € S :y <> x}. Then every state in Cy has period d.

Proof. The trivial case C; = {z} is obvious. We can assume |C;| > 2. Then for any
y € Cy \ {7}, pzy > 0 and py, > 0. By Lemma 3.21, there exists L, M € Z, s.t. p*(z,y) >0

and p™(y,z) > 0. Therefore, by Theorem 3.18,
p" My, y) > p" (y, 2)p" (x,y) >0,
which means d, | L + M. For any n € I, p"(z,z) > 0, then

pE My gy > pM (y, 2)p" (@, 2)p (2, y) > 0,
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thus dy|L +n+ M. So dy|n for any n € I,, which implies d,|d,. By the same argument, we

can show d;|d,, thus d, = d. ]

Corollary 3.52. Suppose p is irreducible, then
1. All states have the same period.
2. If p(xz,x) > 0 for some state x (a self loop), then d, = 1, hence p is aperiodic.

Example 3.53. For the Markov chain in Figure 6, I = {4,6,8,10,--- }, so d; = 2, the whole

01?05?
41_@<1_@

Figure 6: A 6-state Markov Chain

chain has period 2.

For the Markov chain in Figure 7, I) = {4,5,8,9,10,---}, so d; = 1. The whole chain is

®_1,

aperiodic.

1 0.5 0.5
1 ( : ) 1 < : >
Figure 7: A 5-state Markov Chain

Figure 8 shows an irreducible chain with period 2, but it is transient.

86



Notes Huarui Zhou Probability

0.2 0.2 0.2

Figure 8: An irreducible, periodic but transient chain

In Figure 7, notice that I} = {4,5,8,9,10, 12,13, 14, 15,16,17,--- }, i.e. p"(1,1) > 0 for all
n > 12, so we have the next result (Proposition 3.57), the following lemmas will be used to

prove it.

Lemma 3.54. If m,n € I, then m+n € I, and km € I, for any k € Z...

Proof. By Theorem 3.18. ]

Lemma 3.55. If A C Z, is an infinite set, then there exists a finite subset A’ C A s.t.
ged(A) = ged(A”).
Lemma 3.56. Suppose A = {ay,a2, - ,ar} C Zy, then there exists c¢1,--- ,cx € Z s.t.
cray + caay + -+ - + cpa = ged(A).

Proposition 3.57. Suppose x € S with d, = 1, then there exists m, € Z, s.t. m € I, for

all m > m,.

Proof. 1. We only need to show there are two consecutive integers n and n 4+ 1 in I,. Then
let m; = n(n — 1), for any m > my, m can be written as m = kn + r (divide m by n with

remainder r), where k >n — 1,0 <r <n — 1, then by Lemma 3.54,
m=kn+r=(k-rn+r(n+1) € l,.

2. Since ged(I;) = 1, by Lemma 3.55 and 3.56, there exists integers iy, i, -+ ,ix € I, and
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c1,02, ¢ € 4, s.t.

c1i1 + eig + -+ cpip = dyp = 1,

let a; = cj = max{c;,0}, bj = ¢; = max{—c;,0}°, then a;,b; > 0 and ¢; = a; — bj, we have
arin + - + apip = biit + - - + byip + 1.

Let n = byiy + -+ biip € I, then n+ 1 = ayiy + - - - + axip is also in I,. O]

Corollary 3.58. Suppose x € S with d, > 1, then there exists my, € Z4 s.t. md, € I, for

all m > m,.

Remark. In Proposition 3.57, the problem of finding the minimal integer m, s.t. m € I,

for all m > m, is called Frobenius problem.

Lemma 3.59. Suppose p is irreducible with d > 2, if p(xz,y) > 0 for some x,y € S, then

pN(y,x) > 0 for some N =d — 1 (modd) .

Theorem 3.60 (decomposition theorem). Suppose p is irreducible and has period d > 1,

then S can be written as the disjoint union of subsets Sp, S1,--- ,Sq_1 where for any x € S;

p(x,y) >0 = yESi—Hmodd-

Moreover, this decomposition is unique up to the cyclic permutations.

Proof. Define relation ~ on S: z ~ y if p"¢(x,y) > 0 for some n € Z, .
Claim. ~ is indeed an equivalence relation.
i) z ~ x by Corollary 3.58;

i) if 2 ~ y, i.e. p"(x,y) > 0 for some n € Z,, then suppose p”(y, ) > 0 (by irreducibility),

5We can assume b; are not all zero, otherwise c¢; > 0 for all j, then there must be some i; = 1 and ¢; = 1,
implying I, = Z, which is the trivial case. Thus byi; + - - - + brix € I.
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we have

p " (2, x) > p™(z, y)pt(y. x) > 0,

then d|nd + L, thus d| L, which means y ~ z;

iii) Suppose z ~ 1, y ~ 2, i.e. p"(z,y) > 0,p"(y, 2) > 0 for some m,n € Z,, then
pt @, 2) > p @, y)p (Y, 2) > 0,

thus x ~ z.

Therefore, the equivalence relation ~ determines a unique partition on S. For any zg € S,
let Sy = [zo], i.e. the equivalence class containing zo. If Sy = S (i.e. d = 1), we are done;
if So € S (i.e. d > 2), then there must exist x1 € S\ Sp s.t. p(zg,x1) > 0. Let S1 = [z1],
suppose p(y, z) > 0 for some y € Sy, z € S, we want to show z € Sy. Since p™%(zg,y) > 0 for

nd—l(

some m and by Lemma 3.59, p x1,20) > 0 for some n, then

On+40d( nd—l(

r1,2) > p 1, 20)p™ (0, y)p(y, 2) > 0,

p

so x1 ~ z, z € S1. Repeating this procedure, we can find all desired So,--- ,S,_1. [

Remark. The above theorem actually shows such chain will visit S; one after the other.

Suppose x € S;, then P, (X, € Sy timodq) =1 for any n € Z.

3.8 Stationary Measures

Here we still consider the countable state space S.

Definition 3.61. Suppose p: S — [0, +0o0] is a measure on (S5,S). X, is a Markov chain on

S with transition probability p.
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1. Denote
up(y) = Y p@)p(z, y).

T€S

2. is called a stationary measure if it is o-finite” and for any y € S,

3. p is called a stationary distribution, if p is a stationary measure and p(S) = 1.

4. We say pu satisfies the detailed balanced condition or u is reversible if for any x,y € S
p)p(e, y) = w(y)p(y, ©).

Proposition 3.62. =1 is a stationary measure if and only if for any y € S,

> play) =1.

x€S
Proof.
S pley) =3 p)ple.y) = ply) = 1 -
zeS zeS

Proposition 3.63. If a measure p is reversible, then it is a stationary measure.

Proof. Suppose p is reversible, then
pp(y) = > p@)p(e,y) =Y p@py, ©) = uly) > ply,z) = py). O
z€eS x€s z€eS

Proposition 3.64. Suppose p is a stationary measure and Xo has “distribution” . Let

Yo = Xpem, 0 < m < n is a Markov chain with initial “distribution” p and transition

"This means for any z € S, u(x) := p({z}) < co.
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probability
#y)ply, z)

q(z,y) = 1(2)

Furthermore, if p is reversible, then q = p.

Theorem 3.65 (Kolmogorov’s cycle condition). Suppose S is irreducible w.r.t. transition
probability p. Then there exists a reversible measure if and only if the following two conditions

hold,
(i) p(z,y) > 0 implies p(y,x) > 0;

(13) for any loop xo,x1, - , Ty = To, if

then we have
Hp(iﬂzel,%) 1 @)

pale p(xi, xi—1)

Proof. =:Suppose there is a reversible measure p. Since S is irreducible, then for any
r,y €S, pyy = Py(T, < 00) > 0, thus p(z) > 0 for any = € S (otherwise P, = 0). By the

definition of reversible measure,

w(@)p(z,y) = py)ply, ),

therefore p(x,y) > 0 implies p(y,z) > 0. Next, suppose xg, 1, -, T, = o is a loop, and (1)

holds. Then by definition, for any i =1,--- ,n,

p(xi)p(zis xio1) = p(wi-1)p(i-1, )
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multiply them together, we get

[ w@p@i,zin) = [] w(zi)p(zio1, @),
i=1 i=1
Le. n n i—1 n
[ e ] [ p@iwia) = [ et ] [ plwio, ),
i=1 i=1 i=0 i=1

(2) is obtained since [[i_, p(z;) = H?:_Ol ().
<=:Suppose the two conditions hold. Fix a € S, since S is irreducible, for any = € S, pgz > 0,

by Lemma 3.21, there exists a path zg = a,z1, -+ , 2, = z, s.t. [[i_; p(x; — 1, 2;) > 0. Define

(x) = H p(wi—1, x;) .

p(xi, xi—1)

First, p is well-defined, i.e. p(x) is independent of the path from a to z. Let Ty =
a, %1, ,In = x be another path with [, p(Z; — 1,Z;) > 0, then zy = a, 1, , 2, =

T = Tp,Tn-1, " ,21,To = a is a loop, thus by (2), we have

. - . n
p(w07x1) p(fEn—l,fEn) p(l'n,xn—ﬁ p(ILfEO) p% 17372 H xuxz 1

1= A LA a7
p(flfl,ZL‘()) p(xn,l'n—l) p(xn—l,xn> p(fEO,!L‘l) z‘:lpx“xz 1 z:l xz laxz

therefore

n ~ ~
H p(wi-1, %) _ H p(Ti-1,7:)
L plwiwia) P Tia)
i.e. two different paths give the same p(z) value.

Second, we will show p is reversible, i.e. for any =,y € S

w(@)p(x,y) = p(y)py, ). (3)

If p(z,y) =0, by (2), p(y,z) = 0, then (3) holds. If p(x,y) > 0, by (2), p(y,x) > 0 and there

exists a path from a to y, i.e. z9 = a,21, - , 2, = x,Ty41 = y With H?;Lll p(zi—1,2;) > 0,
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then
n+1
p(Ti-1,7;) 1,951 p(xi- 1,93@ (T, Tng1) () - p(z,y)
p(zi, zi-1) p(@i,xi—1) | p(Tnt1,Tn) p(y,v)’
thus (3) follows immediately. O

Lemma 3.66. If p is transient, then a stationary distribution does not exist.

Proof. Suppose there is a stationary distribution 7. By Lemma 3.31, p is transient implies

for any x,y € S,

Z Z pzyp < 00,

1 - Pyy
thus as n — oo,

p"(z,y) = 0.

By the property of stationary distribution, for any y € S,
(y) = mp"(y) = Y _ m(x)p"(z,y) = O,

which contradicts that 7 is a distribution. O

Theorem 3.67 (construction of stationary measure). Suppose = is a recurrent state, then

foranyy e S,
T,—1 00
pa(y) = Eqy (Z H{Xn:y}> = pr(Xn =y, Ty >n)
n=0 n=0

defines a stationary measure.

Proof. Our goal is to show for any z € S,

pap(2) = pa(2).
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First, we have

pap(2) = Y na(y)p(y, 2)

yes

=) Pu(Xn =y, Te > n)p(y, 2)

yeS n=0

= Z Z]P’I;(Xn =y, Ty >n)p(y, 2) (by Fubini’s theorem)
n=0 yes

o
= ZZPx(Xn =y, Ty >n, Xpy1 = 2).
n=0 yeS

The last equality above holds because
P(Xn, 2) = Pp(Xnp1 = 2| Fp) = Em(l{Xn+1:z}|fn>>

then for A ={X,, =y,n < Ty} € F,, we have

]EI(]]-{Xn+1:z}:H-A) = E$<p(Xna Z)I]-A)7

LHS is P, ({Xp+1 =2} NA) =Pu(Xy, =y, T > n, Xpt1 = 2), RHS is p(y, 2)Py(A) = Po (X, =

y, Ty >n)p(y, 2).
Case 1. z # .

Notice that X, # = on T, > n, i.e. {X,, = x,T, > n} = @, then
| {Xn =970 > n, Xoj1 = 2} = {X, € S\ {2}, T > n, Xpy1 = 2}

yeS

= {Xn+1 = Z7Tl' >n+ 1}7
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therefore,

pap (2 Z ZP =y, Ty >n, Xpp1 = 2)

n=0 yeS

o
:ZP“” |_|{Xn =y, Ty >n,Xpt1 =2}
-

yes

oo
= pr(XnH =2,T,>n+1)

oo
=) Pu(Xp =2T, > n)
n=1

:ZP Xpn=2,T; >n) (since P, (Xog = 2, T, > 0) =0)

= piz(2).

Case 2. z = z.

In this case,

U{Xn:y,Tx >n, Xpy1 =} ={X, € S\ {2}, Ty >n, Xpy1 =2} ={T, =n+ 1},

yes

thus

Mxp ZZP n—yaTx>n;Xn+1:x)

n= OyES

_ZIP’ T, =n+1)

=P, (T, < )

= pzz = 1. (since z is recurrent)
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On the other hand, {X,, =n,T, >n} = forn > 1, so

pe(z) = ZPI(Xn =x,Ty, >n)=P,(Xo=2,T, >n) =1,
n=0
hence pizp(x) = piz(2). [
Remark. 1. If x is transient, Case 1 still holds, but Case 2 will be different, because

(ap(2) = pre < 1= pa(z).

2. ug is o-finite, i.e. for any y € S, pz(y) < co.
If y =z, clearly, p,(z) =1 < oco. Suppose y # z. If pyy =0, since {X,, = y,T, > n} C
{X, = y} € {T,, < oo}, thus

00 00
Ho(y) = Pu(Xo =y, Tp > n) < Y Py(Ty < 00) = 0.
n=>0 n=0

If pry > 0, since x is recurrent, by Proposition 3.34, y is also recurrent, and py, =1 > 0,

by Lemma 3.21, p"(y,x) > 0 for some n > 1. By the property of stationary measure,

we have
1 :,Um( ) ,u;cp Z,um Z x >,ux(y)pn(y,:l:),
zeS
thus
(y) < 1 <
pe(y) < 00.
’ P (y, x)
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3. We have

1a(S) =Y pa(y)

yes
00
= ZZPJ;(XH =y, Ty >n)
yeS n=0
00
= Zsz(){n = yaTa: > TL)
n=0 yes

= Pu(Ty >n)
n=0
=E.(T,), (tail sum formula)

thus if E,(T%) < oo (positive recurrent),

is a stationary distribution.

Theorem 3.68. If p is irreducible and recurrent, then the stationary measure is unique up

to constant multiples.
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Proof. Suppose v is a stationary measure, let a € S, then for any z € S,

yeSs
= V(a)p(a’v Z) + Z V(y)p(yv Z)
Ve
= v(a)p(a,2) + Y [D_v(@)p(z,y)| ply, 2)
Ziﬁ LzeS

= v(a)p(a, z) + Z v(a)p(a,y) + Z v(z)p(z,y)| p(y, )

yeS zeSs
y#a | z#a
= v(a)pla,2)+ > vla)pla,y)p(y, 2) + > > v(@)p(e, y)p(y, 2)
yes yeS xes
ya ya ya

= V(G)Pa(Xl = Z) + V(G)Pa(Xl %+ a, X9 = Z) + PV(X() #a,X1 # a, X9 = Z)

:V(G)ZIP’G(Xk%a,l§k<m,Xm:z)+]P’,,(Xk7éa,O§k:<n,Xn:z)

m=1

:V(G)Z]Pa(Ta>maXm:Z)+Pu(Xk7éa>0§k<naXn:Z)

m=0

> v(a) Zn: P (To, > m, X, = 2)

m=0

(it holds for both z = a and z # a) let n — oo, we have

v(2) 2 v(a)pa(2),

where fi4 is the stationary measure defined by Theorem 3.67. Next, we will prove it is actually

an equality. Since p is irreducible, we have p,, > 0, thus by Lemma 3.21, p"(z,a) > 0 for
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some n € Z,. Notice that
v(a) = S v@p(x,a) > v(a) 3 pa(@)p" (@, 0) = via)pala) = v(a)
zeS x
where we apply pq(a) =1 from Theorem 3.67. Therefore
> (@) = v(a)pa(x)lp" (x,0) = 0,
x€S

where [v(z) — v(a)pq(2)]p" (x,a) > 0, thus
v(z) — v(a)pe(x)]p"(z,a) =0, VzeS.

When = = z, since p™(z,a) > 0, it follows v(z) — v(a)ua(z) = 0 ie. v(z) = v(a)pa(2).
Moreover, by the o-finiteness of v, we have v(a) < cc. n
Now we have proved the existence (Theorem 3.67) and uniqueness (Theorem 3.68) of

stationary measures.

Corollary 3.69. If p is irreducible and recurrent, and there is a positive recurrent state

x € S, then there is a unique stationary distribution, which is

= ki
E.(T,)
By Theorem 3.68, such stationary distribution is unique. [

Lemma 3.70. If there is a stationary distribution w, then any state y with n(y) > 0 is

recurrent.
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Proof. For any n > 1, we have

TP =T,

then for any y € S, by Fubini’s theorem and = (y) > 0,

D@y )= Y w@p(ey) =) wly) = oo
n=1

reS n=1zeS n=1

By Lemma 3.31,
prAl prypyy ’
n=1

thus

OO:Z”@)ZP”( LY Z prypyy Zpﬁylz Pwy<zpyy ’
€S

n=1 z€S xS
which implies p,, = 1, i.e. y is recurrent. [

Proposition 3.71. If p is irreducible and there is a stationary distribution w, then
1. w(x) >0 for any x € S;

2. p 1s recurrent;

3. m is the unique stationary distribution;

4. p s positive recurrent;

5. for any x € S,

Proof. 1.Suppose there exists an « € S s.t. w(x) = 0. There must be some y € S s.t.

m(y) > 0, otherwise 7 fails to be a distribution. Since p is irreducible, p,, > 0, by Lemma
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3.21, p"(y,x) > 0 for some n € Z,. But

and 7(y) > 0, suggesting p"(y,z) = 0.

2. By Proposition 3.70, all states are recurrent.

3. By Theorem 3.68.

4. By Theorem 3.67, for any = € S, pu, is a stationary measure. And by Theorem 3.68,

iy = cm for some ¢ < oo, thus by Remark 3 in Theorem 3.67,

E.(Ty) = pz(S) = em(S) = ¢ < o0,

i.e. all states are positive recurrent.

5. By Corollary 3.69, for any x € S,

Proposition 3.72. Suppose S is irreducible, then TFAE,
1. Some x is positive recurrent;
2. There exists a stationary distribution;

3. p is positive recurrent.
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Proof. 1 = 2: Suppose x is positive recurrent, then by Theorem 3.67

=t
E.(Tz)
defines a stationary distribution.
2 = 3: By Proposition 3.71.
3 = 1: trivial. O
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3.9 Asymptotic behavior

In this section, we will consider the asymptotic behavior of p"(z,y).

Proposition 3.73. If y € S is transient, then p"(x,y) — 0 as n — co.

Proof. By Lemma 3.31, y is transient implies for any = € S,

o0

> v Z PayPlyy

n=1

< 00,
1_pyy

thus as n — oo,

p"(z,y) — 0.

How about the case when y is recurrent?

Definition 3.74. For any y € S, n € Z,, let N,(y) be the number of visits to y by time n,

i.e.
n
Na(y) = D Hx,=y)
m=1

Lemma 3.75. Suppose y is recurrent and for any k > 0, let R, = T?f be the time of the k-th
return to y. For k> 1, let r, = Ry — Ry—1 be the k-th interarrival time. Then under Py, the

vectors v = (15, Xp, s+ s XRo—1), k> 1 are i.i.d.

Proof. Let’s make some examples first, if Ry =5, Rp = 8, R3 = 10, then v; = (5, Xo, -+ , X4),
Vg = (3, X5, Xg, X7), vz = (2, X, Xg). So we observe that va(Xo, X1, X3,--+) = Ul(X5, Xg, X7, ),
in general,

v =v100p,_,.

i)First, v, and v; have the same distribution.
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Let X = (Xo,Xl, . --), X' =X 0‘9ka1 = (XkanXqu—&-l? s ), then for any A € F,

Py(X" € A) = Ey(1yxcay ©Or,_,)

= Ey [Ey(ﬂ{XGA} o ekal |‘FRk71)]

=Ey[Ex,,  (Lixecay)] (Rip—1 < oo a.s. and strong Markov pproperty)

= P?J(X € A)7

thus X and X’ has the same distribution, then v, = v1(X’) and v; = v1(X) has the same
distribution.

ii)Second o(v) is independent of Fg, .

Claim. For any {X € A} € o(X), if P(X € A|F) = P(X € A), then o(X) and F are
independent.

Proof. For any B € F, by the definition of conditional expectation, we have
P{X € A} N B) =E(l{xea 1) = EP(X € A)1p) =P(X € A)P(B),
thus ¢(X) and F are independent.

Let {v € V} € o(vg), by the strong Markov property, we have

Py(vk € VIFR,_1) = Ey(Levy 0 Or [ FRiy) = Exp,  (Lpievy) = Py(v1 € V) =Py(vp € V).

Therefore, by the above claim, o(vg) is independent of Fgr, , D o(v1), - ,0(vg_1), SO v is
independent of vy, -+ ,v,_1 and also has the same distribution as them. By induction, vy,
k> 1 are all i.i.d. O
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Theorem 3.76. Suppose y s recurrent. Then for any x € S,

Nn(y)

%

n Ey(Ty) H{Ty<oo} IP’x-a‘s.

as n — oQ.

Proof. Case 1. Suppose the chain initiates at y. Let rp = Tyk — Tykfl, then by Lemma 3.75,
rg, k> 1 are iid. and Ey(ry) = Ey(r1) = E,(Ty) (< 0o or = c0). Therefore, by the strong

law of large number,

D1k _ Ly

== - = = 5 E,(T, P,-a.s. 1

n n y(Ty) y~a.S (1)

Since T;V"(y) <n< T;V"(y)ﬂ (where TyN"(y) means the time of the last return to y by time n,

TyN "+ means the time of the first return to y after time n),
TyNn(y) n T?jVn(y)Jrl Ny(y) + 1

No) = Nal) “ M)+ 1 Nay) (2)

By Proposition 3.32, y recurrent implies E, [N (y)] = oo, then N(y) = lim; o Ny (y) = 00 a.s.
Let n — oo in (2), by equation (1), squeeze theorem of limit and subsequence convergence,

we have

— E, (T, P,-a.s.
Nn(y) ?J( y) Yy

Case 2. Suppose the chain initiates at  and  # y. Since p;, may not be 1, we need to

consider both {7}, = oo} and {7}y < co}. On {7}, = oo}, Ny(y) =0, for all n € Z,, then

Ni(y)

n

— 0.

On {T, < oo}, by the same argument in Lemma 3.75, r,,k > 2 are i.i.d, and for £ > 2,
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P, (ry =n) = Py(Ty, = n), thus E,(ry) = E,(T}), then by the strong law of large number,

T "
Fy — Ey + % — 0+ E,(rp) = Ey(Ty) P,-a.s.

Repeating what we did in Case 1, we have

— P,-
n E,(Ty) v
Therefore in Case 2, we have
Na(y)
n — Ey(Ty) H{Ty<oo} ]P’m—a.s. ]
Remark. 1. This theorem provides an interpretation of positive recurrent and null recur-

rent. If y is positive recurrent, then the asymptotic frequency of visits at y is positive;

if y is null recurrent, then it is 0.

2. Since N"T(y) € [0, 1], by bounded convergence theorem,

Ni(y) 1
Ezz Ew ™ N <ooltls
[ " ] = []Ey(Ty) 147, <00}
i.e.
Ex(Nn(y)) - Py (Ty < o0) Pzy
n Ey(T) Ey(Ty)
Notice that
Ex<Nn<y>> = Ex[z H{Xm:y}] = Z ]P)x(Xm = y) = me<x7y)7
m=1 m=1 m=1

therefore

106



Notes Huarui Zhou Probability

as n — oo. This means p"(x,y) converges in the Cesaro sense if y is recurrent (Ce-
saro convergence is also true for transient state, because convergence implies Cesaro

convergence).

Corollary 3.77. Suppose p is irreducible. If p is transient or null-recurrent, then for any
T,y €5,

1 n
- E pm(l,7y) — 07
n

m=1

as n — oo. If p is positive-recurrent, then for any x,y € S,
1 n
3 () (),
m=1

as n — oo, where w is the stationary distribution of p.

Theorem 3.78 (Convergence theorem). Suppose Markov chain X,, has transition probability
p and initial distribution . If p is irreducible, aperiodic, and has a stationary distribution

m, then for all y € S,

as n — oo. In particular, for all z,y € S,

Px(Xn = y) = pn(x’y) — W(y)

as n — oQ.

Proof. We will use a technique called coupling. Let Y,, be a Markov chain with transition
probability p and initial distribution =, and independent with X,,. Consider Z,, = (X, Yy).
1. Z, is a Markov chain on S? = S x S with transition probability 5 and initial distribution

A, where

p((21,92), (x2,y2)) = p(z1, 22)p(y1,y2), Vr1,22,91,y2 € 5,
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and

Mz, y) = p(z)m(y).

2. p is irreducible.

Since p is irreducible, there exists K and L, s.t. p®(z1,22) > 0 and p“(y1,2) > 0. And by

Proposition 3.57, there exists m(x2), m(y2) € Z+ s.t. for any m > m(z2) and n > m(y2),

p" (w2, x2) >0, p"(y2,y2) > 0.

Let M = max{0, m(z2) — K, m(y2) — L}, then

pEALAM () 29) > pl(ay, 20)pB M (w9, 20) > 0, pE LM (y1 yo) > pT (41, 1o
thus

f)KJrLJrM((fBl, y2), (22, y2)) = pK+L+M($1,$2)pK+L+M(3/173/2) >0,
as desired.

3. 7 defined by 7(a,b) = 7(a)7(b) is a stationary distribution for p.

This is because for any (x1,y1) € S?,

ﬁ-p(‘rlayl) = Z %(x,y)p((x,y),(xl,yl))

(r,y)€8?

= Z m(x)m(y)p(w, 21)p(y, y1)
Y)E

S2

and Z(Ly)ESQ 'ﬁ-(w,y) - 1

4. Since p is irreducible and has a stationary distribution, by Proposition 3.71, p is positive

recurrent.
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5. For any z € §, define ' = inf{n > 1 : X, = V;,}, T, = inf{n > 1: X, =Y, = z}.
Since p is irreducible and recurrent, by Proposition 3.47, P)(T, < oo) = 1. Then we have
Py\(T < o0) =1 because {T, < oo} C{T < oo}.

6. On {T < n} (after hitting the diagonal), X,, and Y,, have the same distribution.

Since {T' < n} =|]|'_{T =m}, for any y € S,

P\(X, =y, T <n)= ZIP’)\(Xn =y, T =m)
m=1

= ZR:ZIP’)\(Xn:y,T:m,Xm:x)

m=1zeS

= Z ZIP’A(T =m, Xpym = 2)Pr\(Xp, = y|Xm = 2,7 =m)
m=1z€eS

=Y Y PAT =m, Y = 2)p" " (,y)

m=1zeS

n
= Z ZIP’)\(T =m, Y, =2)P\(Y,=ylYy =2, T =m)
m=1z€eS
=P\(Yn=y,T <n).
7. Notice that

Py\(Xn=y) =P\(Xn =y, T <n) + Px\(Xp, =y, T > n)
=P\(Y,=9y,T<n)+P\(X,=y,T >n)

S P)\(Yn = y) + ]P)\(Xn = yaT > n)a

and similarly,

Pyx(Yn=y) <PA(Xp =y) + PAx(Yo =y, T > n).

So ]P)\(Xn = y) — ]P)\(Yn = y) < ]P))\(Xn = y,T > n) and P)\(Yn = y) — ]P))\<Xn = y) < ]P)A(Yn =
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y, T >n),

Pu(Xn =y) = 7(y)| = [PA(Xn = y) = Pa(Yn = y)|
S maX{]P)A(Xn = yaT > n)v]P))\(Yn = yaT > Tl)}
<P\(Xp=y,T>n)+P\(Y,=y,T >n)

< 2Py\(T' > n) — 0,

because T < co a.s. Therefore

lim P, (X, =y) =7(y). ]

n—oo

For the version of null-recurrent, we have the following theorem.

Theorem 3.79. Suppose p is irreducible, aperiodic, and null-recurrence, then for anyy € S,

as n — o0.
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4 Branching process

4.1 Model description and basic properties

Galton-Watson tree or Branching process is a sequence of r.v. {Z, : n > 0} with Zy = 1 and

forn>1

Zn—l
Zp = { i=1

0 Zn—1=0

where §£m) : Q — N for all m,: are i.i.d ~ £. In other word, {Z, : n > 1} can be viewed
as a family starting from one ancestor (Zj). Everyone can generate children following the
distribution of £. And Z,, is the total number of people in the n-th generation.

Let pr = P(¢ = k), k € N be the probability that a person generates k children. Then
> xpr = 1. Denote p = E(£). To avoid the trivial case, we always assume pg > 0 and

po+p1 <1

Lemma 4.1. {Z, : n > 0} is a Markov chain on S = N with transition probability
i
p(i,5) =P &m =)
m=1
Proposition 4.2. All states k > 1 are transient. State 0 is recurrent and absorbing.
Proof. First we have

pro = Pu(To < 50) > p(k,0) = [P( = 0)]* >0,

and pg, = 0. If k is recurrent, then by Proposition 3.34, pg ;, = 1 which leads to a contradic-
tion, thus state k > 1 is transient. Second, pgo = 1, so 0 is recurrent by definition. Moreover,

r is also an absorbing state since pgj, = 0 for any k > 1. [l
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Lemma 4.3. Let F, = o(€™,i > 1,1 <m < n), p € (0,400), then {W, = Z,/u" : n > 0}

is a non-negative martingale w.r.t. {F,}.

Proof. Wy, € Fn. And Since Zn11 = Zni1lyx (z,=k} = Zn+1 2opey L{z,—k}, We have

E(Znt1|Fn) Z Znt11{z,=k}|Fn)
=Y E(E & 4 g g )
k=1
_ Z ﬂ{zﬂ,:k}E(énH + €2n+1 + fk‘nJrl )
k=1
= Z Lz, =k kp
k=1
= Znp,
thus
Zin Zin
E(Wos1|Fn) = B(SE | Fo) = =2 = W, O
T I
Corollary 4.4. W, — W a.s. and E(Wy) < 1.
Proof. Direct from Corollary 2.15. [l

4.2 Generating function

Definition 4.5. Define generating function ¢ : [0,1] — R by

p(s) = E(s) = Zpksk-
k=0

Lemma 4.6. The generating function @ has the following properties:
L. ¢(0) = po, (1) =1

2. ¢'(0) =p1, ¢'(1) = pu
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3. ¢'(s) >0 forall s € (0,1), i.e. ¢ is strictly increasing on (0,1).
4. ¢"(s) >0 for all s € (0,1), i.e. ¢ is convex on (0,1).

Proof. 1. ¢(0) = po is obvious,

oo
p(1)=> pp=1.
k=0
2. Since ¢(s) is absolutely convergent on [0, 1], We have
o0
Qpl(s) = Z ka Z kpks =p1 +2p2s + 3p352 +e
k=0

thus ¢'(0) = p1, '(1) = 3.2, kpr = E(&) = .
3. By assumption, p; > 0, so ¢'(s) > p1 > 0 on (0,1).

4. Since

o
Zk —1pks 2 = 2py +6pgs+--- > 0.
k=2

Proposition 4.7. Suppose p is the transition probability, then

pls) =Y p(LR)s",  [p(s)l = p(j k)s".
k=0

of

€
—~
V)
~—
S
I
1
Nk
g~
—
—
oy
~—
»
b
I
<

the coefficient of s" equals

Z lek P +&A+---+& =n)

kl,k27 . 7kj
ki+kao+-- —Hfg—n
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Proposition 4.8. Let gp(")(s) = E(s%") = ka”(l,k)sk, where p"(1,k) is the n-step tran-
sition probability. Let ¢" be the n-th iteration of ¢, i.e. ©"T1(s) = p(¢™(s)) for all n > 1.
Then

2. For any j >0,

() =D p"(. k)s*
k=0
3. p"(5,0) = [¢"(0)).
Proof. 1. On {Z,,_1 = k}, we have
k k
B(s” Lz, il Fa1) = B(J [ 80z, oyl Fa1) = [ [ Bz, -y = [0()* Lz, -ty
i1 i1

take expectation, we have

E(s”) = El[e(s)) %],

since E(s%1) = ¢(s), E(s%2) = E[[¢(s)]%] = ¢(p(s)), we finish the proof by induction.
2. See proof in Proposition 4.7.
3. Let s =01in 2). O

4.3 Moments
Let p = E(¢), 0 = Var(&?).
Proposition 4.9. E(Z,,) = u".

Proof. Since W, = Z,,/u™ is a martingale,

1 =E(W,) = E(W,) = . O
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Proposition 4.10.
o (u" — 1)

7 ifp#1
Var(Z,) = K
no? ifu=1
Proof. Observe that
G = S k(LR ) = S k(k - 1pn(1, R)sE2,
k=1 k=2

SO

E(Z7) =Y Kp"(Lk) = [" (1)) + [ ()"
k=0

[ (D)) = pey kp™(1, k) = E(Z,) = . For [¢"(1)]”, we note that

["(5)]" = (" (s))]"

let s =1, since (1) =1, ¢'(1) = u, ¢"(1) = E(£2) — /(1) = 02 + p? — p, we have
" (W) = ¢"(1) - [[" O+ (1) - ["H D) = (0 + 1 = ™2 4l (L))"
By induction, we have

" (V)" = (0% + 1 = ) (™2 4 @73 4 ",
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therefore

Var(Zy) = E(Z;) - [E(Z,))?

2n—2 2n

="+ (0P =) (T T ) —

=W U g T (= D )

:02/1"71(1—1—,u+,u2+~-+,u”71)

2, n—1/,n _
orp" (Wt = 1) if 1
— p—1
no? if u=1
]
Corollary 4.11.
o (p" — 1)
1 e#l
Var(W,) = —Varan) — M ;1(” -1
p" no .
i ifu=1
o
Proposition 4.12. If i > 1, 0% < oo, then
1. Wy, = Wy in L? and L
2. EWy) =1,
2 o’
E(W2) =1+ —2.
(Weo) p(p—1)
Proof. By Corollary 4.11, for all n > 0,
1
) ) Uz(u"—l) ‘72(1_M_n) 2
E(W2) = Var(W,) + EW,)2 = —t — 4 1=— #1717 _11<o
(W) = VW) Bl = o oy T " Ty S -
thus sup,, E(W?) < oo, by Theorem 2.25, W,, — W in L? hence also in L'. Then
2 2 o’
E(Wa) = lim E(W,) =1, EW2)= lim EW2) = —7  +1. O
(W) = lim E(W;) W) = lim BV = ——
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4.4 Extinction probability

Definition 4.13. We say the population goes extinct if Z,, — 0, denoted as Z,, = 0. We
say the population does not go extinct if Z, 4 0, denoted as Zo, > 0. (Z, may not have a

limit in case of non-extinction, here Z, is just a notation).
Lemma 4.14. For any w € Q, Z,(w) goes extinct if and only if Z,(w) =0 for some n.

Proposition 4.15. If u < 1, then Zo, =0 a.s. Hence W, =0 a.s.

Proof. Since Z,, takes integers, {Z, > 1} = {Z,, > 0}, therefore when p < 1,

P(Zn > 0) =E(1{z,501) < E(Znl{z,50y) < E(Zn) = p" =0,

which implies Z,, — 0 in probability. Since

o o u
n=1 n=1
by Borel-Cantelli lemma, P(Z, > 0, i.0.) =0, thus Z, — 0 a.s. ]

Proposition 4.16. If u =1, then Zo =0 a.s.
Proof. When p =1, W,, = Z,, —» Zy a.s. and Z, < oo a.s. For any k > 0, since k is
transient, by Proposition 3.73,

P(Zoo = k) = lim P(Z, = k) = lim p"(1,k) = 0.

n—oo n—oo

Combining Z,, < oo a.s., we conclude that Z,, = 0 a.s. Another way to illustrate: if Z,, = k
for some k£ > 0 if and only if there exists N > 0 s.t. Z, = k for all n > N. However, since

P(Z, =k for all n > N) = lim [p(k, k)]" =0,

n—oo

117



Notes Huarui Zhou Probability

so w.p.1., Zy # k, for any k > 0. [
Lemma 4.17. P(Z,, = 0) = lim;, oo P(Z,, = 0) = lim,,—,00 ¢™(0).

Proof. Since {Z, =0} T {Z = 0}, we obtain the result by the continuity of probability. [
Lemma 4.18. Let p = inf{s € (0,1] : p(s) = s}, then lim,_ ¢"(0) = p.

Proof. Let 0, = ¢"(0), then 6; = ¢(0) = pg > 0. First, we have 0, is an increasing sequence,
because ¢ is strictly increasing, then 62 = ¢(01) > ¢(0) = 61, 03 = p(b2) > ¢(01) = 62 and so
on. Second, 6,, < p for all n, because 0 < p, then 6; = p(0) < ¢(p) = p, O2 = ©(01) < p(p) = p
and so on. By monotone convergence theorem, there is a limit for 6,,, denoted as 6,. Take
limit on both side of 0,11 = ¢(0,), we have 0 = ¢(0), since 05 < p, O cannot be other

solution of ¢(s) = s that is larger than p, therefore 6., = p. O

Proposition 4.19. If 0 < p < 1, then 1 is the only solution for ¢(s) = s on [0,1]. Hence
P(Zs = 0) = 1.

Proposition 4.20. If u > 1, there is a unique p € (0,1) s.t. p(p) = p. Moreover, P(Zy =

0) = p.

Proof. 1.Since ¢ is increasing and ¢'(1) = p > 1, there must be h € (0,1) s.t. ¢(h) < h. And
©(0) = pog > 0, so there exists p € (0,h) s.t. ¢(p) = p.

2. Since p = E(§) > 1, then pi > 0 for some k > 2, otherwise = p; < 1. So ¢”(s) > 0 on
(0,1), i.e. strictly convex.

3. Let p =inf{s € (0,1) : p(s) = s}, then by the property of strictly convex function, for any
s € (p,1), we have s = Ap+ (1 — \) -1 where A = (1 —s)/(1 — p) € (0,1) and

p(s) = Ao+ (1=A)-1) <Ap(p) + (L= A)p(l) =Ap+ (L - A)- 1 =5,

so p is the unique solution of ¢(s) = s. ]
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4.5 Kesten-Stigum Theorem

If Zoo(w) =0, then Wo(w) = 0. How about the case of non-extinction? What’s the proba-
bility of {w : W (w) > 0} if Zoo(w) > 07

Theorem 4.21 (Kesten and Stigum). Let m > 1, TFAE

1. E(Wy) = 1

[\)

. P(We >01Z5 >0)=1

W

CE(€lng €) < o0
Here Iny () = Inmax{1,z}, p =P(Zs = 0).

Lemma 4.22. [fP(Wy =0) < 1, then P(Wy =0) =P(Zsx = 0) and hence
{We >0} ={Zs >0} a.s.

Proof. Let p=P(W4 = 0), conditioning on Z;, we have
p=P(Weo=0) =Y P(Wo =0|Z1 = k)pp = >_ p[P(Woo = 0)]¥ = ().

k=0 k=0

thus p is a root of p(s) = s. If p < 1, by Proposition 4.20, p is the only root in (0,1) and we

have

Immediately,

P(Ws > 0) =P(Zy > 0).

And {W > 0} C {Z« > 0} because for any w € {W, > 0}, Z,(w) cannot be 0 for some n,
otherwise Z(w) = 0. We conclude that {W > 0} = {Z > 0} a.s. ]
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Proposition 4.23. Let m > 1, if E(¢%) = 7| k*pr < o0, then P(Wo, = 0) = p.

Proof. By Proposition 4.12, E(W4) = 1, which implies P(W, = 0) < 1. Then by Lemma
422, P(Wy =0) = p and {Wy > 0} = {Z > 0} a.s. ]

Remark. This is a weaker result than Theorem 4.21.

Now we start to prove Theorem 4.21.

Lemma 4.24. Define f(x) = E(e ®W=). Then f satisfies Abel’s equation, i.e.

Lemma 4.25. Let X be a r.v. with X >0 and 0 < E(X) =m < oco. Then for any a > 0,

u

/a lz []E(e*“X/m) - e*“] du < o0
0

if and only if
E(X|log X|) < 0.
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5 Ergodic theory

5.1 Measure-preserving map
Definition 5.1. Suppose (2, F,P) is a probability space, and ¢ : Q — Q is a measurable
map. We call ¢ a measure-preserving map, if for any A € F,
Plp~!(A)] = P(A).
Lemma 5.2. ¢ is measure-preserving if and only if for any bounded r.v. X,

E(X op) =E(X). (1)

If ¢ is measure-preserving, then (1) also holds for any X € L.

Proof. <. Take X =14 where A € F, then
P(A) = E(14) = E[14(p)] = P(w: p(w) € 4) = Plp™"(4)].

=. If ¢ preserves the measure, by the above argument, (1) holds for all indicators 1 4, also

all simple functions. By approximation of simple functions, (1) holds for all X € L. ]

5.2 Stationary sequence

Definition 5.3 (stationary sequence). Let {X; : i € I} be a sequence of random variables
where the index set I is closed under addition (e.g. N,Z,R). We call it a stationary sequence
if for any k € I, {X; :i € I} and {X; 1 : ¢« € I} have the same joint distribution (finite terms

have the same distribution).

Lemma 5.4. Suppose I =N or Z, then {X; :i € I} is stationary if and only if {X;:1 € I}

and {X;11 :i € I} have the same distribution.
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Example 5.5. Suppose X = {X,, : i > 0} is a sequence of i.i.d. r.v., then X is stationary.

Proof. For any m € N, suppose A; € B(R), 0 <i < m, then

m m+1
P(Xo € Ao, -+, X € Apy) = HP(Xz' € A)= H P(X; € Aj)P(Xy € Ag, -+, Xony1 € An).
i=0 i1

By 7\ theorem, we have for any A € B(R™),
P(Xo, -, Xm) € Al =P[(X1,--, X;nt1) € Al ]

Example 5.6. Suppose X = {X,, : n > 0} is a Markov chain with a unique stationary

distribution 7. If Xy has distribution 7, then X is stationary.

Proof. For any bounded and S™*!-measurable function f, by Proposition 3.6,

Er[f(X1, X2, -+, Xiny1)] Z/Sf(ﬂﬁlal’zr" ,$m+1)ﬂ(dl’o)/

p(xo, dz) - "/p(ﬁm, dzm41)
S S

:/f(xlvx%”' ,$m+1)ﬂ(d$1)"'/p(xm, A1)
S

S

= [ vtz - [ oo, dew)

S
= ]Eﬂ’[f(XOaXla U 7Xm)]:

so (Xo, -+, Xm) and (Xq,--+, X;m41) have the same distribution. O

Proposition 5.7. Suppose X = {X; : i > 0} is stationary and g : RN — R is measurable.
Define

Vi = 9({Xpn 21 = 0}),

then Y = {Yy : k > 0} is a stationary sequence.
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Proof. Define G : RN — RN by
G(X07X17"') = (YOJYb"') = (g(X()qu’”')Jg(X17X27"')7"')7
obviously, for any k& > 0,
G(Xk7Xk+17 T ) = (Yk7Yk+17 U )
For any bounded and measurable function f: RY — R, we have
E[f(Yb,Yl, e ,Ym)] = E[f o G(X07X17 e )]

=E[f o G(X1, X2, )] (By X, is stationary)

=E[f(Y1,Y2,---)],

thus {Y;, : n > 0} and {Y;, : n > 1} has the same distribution. ]

Proposition 5.8. Suppose X = {X; : i > 0}, then X can be extended to a stationary
sequence on Z, i.e. there exists a stationary sequence X = {X; :i € Z} s.t. {X;:i >0} and

{X; :i>0} have the same distribution.

Proof. For any n > 0, define
Po(X €A 0, X pi1 €A i1, ) =P(Xo€A 1, X1 €A i1, ---),

then IP,,,n > 0 is consistent because

Pri1(Xopo1 €ER, X €A, X i1 € Apin, )
=P(XoeR, X1 €A, X20€ A pny1,--)
=P(Xo€ Ap, X1 € Apy1,--)

=P, (X n€A X pi1€A pi1,--).
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By Kolmogorov’s extension theorem, there exists probability measure P s.t.

PX p€A . Xni1 €A i, )=Pu(X p€A . X ni1 €A pin,--).

By the construction, {X; : 4 > 0} and {X; : i > 0} have the same distribution. To show

{X; :i> 0} is stationary, we only need to show the negative integer part, for any m,n > 0

IEJ)()E'—m—H € A—m; X—m+2 € A—m+17 tU ;Xn—H € An)

=P(Xo€e A, X1 € Apt1, » Xongn € 4p)

IP)(Xv—m S A—myX—m—H € A—m—i—la T 7Xn € An)

]

Proposition 5.9. Suppose ¢ : Q — Q is a measure-preserving map on (0, F,P). Let ©° = id,

O =po " L. Forany X € F, define X, :== X o ", then {X,, : n > 0} is stationary.
Proof. For any bounded and measurable function f : RY — R,
E[f(XO7X1a T )] = E[f(X(w)7X(90<w))7X(902(w)>7 T )]

= E[Fx(w))] here we define Fx(w) := f(X(w), X o p(w), X o <p2(w), o)

= E[Fx o p(w)] (By Lemma 5.2)

= E[f(X1, Xz, --)],

therefore {X,, : n > 0} and {X,, : n > 1} have the same distribution. N

Proposition 5.10. Suppose {Y;, : n > 0} is a stationary real-valued r.v. sequence, then there
exists a measure-preserving map ¢ : Q2 — Q and X € F s.t. {X, :n >0} and {Y,, : n > 0}

have the same distribution where X, = X o .
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Proof. First, (Yo, Y1, ,Yy,) defines a probability measure P, on B(R™*!) by
]P)m(A) = P((Yovyla T 7Ym) € A);

and P,,,,m > 0 is obviously consistent, then by Kolmogorov’s extension theorem, there exists

a probability measure P on (RN, B(RY)) s.t. for any A € B(R™*1),

For any w = (wp,w1,---) € RY, define X (w) = wp, and shift operator

szel . (WO,C«)l,"')H (Wl,CL)Q,"'),

then we have X, (w) = X o ¢"(w) = wy.

¢ is measure-preserving because for any A € B(R™*1),

P(p~'(4)) (Y0, Y1+, Yin) € ¢ (A)]

P
]P)m[<yl7 T 7Ym—|—l) € A]
P,

(Y0, Vi) € 4]

Il
=

(A).

{X, :n >0} and {Y, : n > 0} have the same distribution because for any A € B(R™*1),

]P)((XO)XL U 7Xm) € A) - P((WO,Wl,"’ ;Wm> € A)

((YO’}/l7”' aYm) € A)
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5.3 Ergodicity

Definition 5.11. Suppose (2, F,P) is a probability space, and ¢ :  — Q is a measure-
preserving map. We call event A € F invariant if o~ 1(A4) = A. We call ¢ ergodic if for any

invariant event A, we have P(A) € {0,1}.

Definition 5.12. Suppose {X,, : n > 0} is a stationary sequence, we call it ergodic if the

induced measure-preserving map (shift operator) in Proposition 5.10 is ergodic.

Lemma 5.13. Set of invariant events T = {A € F : o Y(A) = A} is a o-field. X is

Z-measurable if and only if X o p = X a.s.

Proposition 5.14. Suppose ¢ : Q — Q is a measure-preserving map on (Q, F,P), TFAE
1. v is ergodic;
2. For any A€ F, P(AA o1 (A)) = 0 implies P(A) € {0,1};

3. For any A e F, P(A) > 0 implies
P(|J ¢ "(4)) = 1
n=1

4. (mizing) For any A, B € F,

5. For any A, B € F with P(A) > 0 and P(B) > 0, there existsn > 1 s.t. P(o~1(A)NB) > 0;
6. For any X € L?, X oo = X a.s. implies f = C a.s. where C is a constant.

Example 5.15. Suppose {X,, : n > 0} is a sequence of i.i.d. r.v. Let (2 = RN, F,P) be the

probability space s.t. for any w € Q, X,,(w) = wy,. Then the shift operator ¢ on Q is ergodic.
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Proof. Suppose A € F is invariant, then A = ¢~1(4), i.e.
A={w:we A} ={w:¢pw) € A} € 0(X1, X2, ),
By iteration, we have
A=A{w:¢"(w) € A} € o(Xn, Xnp1,-- ),

thus
AeT = ﬂ Xp:in>k).
By Kolmogorov’s 0-1 law, we have P(A) € {0, 1}, therefore ¢ is ergodic. O

Example 5.16. Suppose {X,, : n > 0} is a Markov chain on a countable state space S with
a stationary distribution 7 (w(x) > 0 for all x € S). Then the induced shift operator ¢ is

ergodic if and only if X, is irreducible.

5.4 Birkhoft’s Ergodic Theorem

In this section, we always suppose ¢ is a measure preserving map on (2, F,P).
Theorem 5.17 (Birkhoff’s Ergodic Theorem). For any X € L',

n—1
1
— E X(o* = E(X|Z) a.s. and in L'.
n

k=0

Lemma 5.18 (Maximal ergodic lemma). Let Xj(w) = X (p*F(w)) for k € N and w € Q.
Define

n—1
w) =) Xp(w)
k=0
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and

Mp(w) = max{0, S1(w), -+, Sp(w)}.
Then E(X1pr,50y) > 0 for alln € Z.

Proof. For 1 <k <n,

My 0 p(w) > Si 0 p(w),

then

X(w) + My o p(w) = X(w) + Sg 0 p(w) = Spp1(w),

thus

X(w) > Spp1(w) — Mpopw), VI<Ek<n. (1)

Since M, o p(w) > 0, we have
X(w) + My 0 p(w) > X(w) = Xo(w) = S1(w),
ie. X(w) > S1(w) — M, op(w). Therefore,
E(X T, >0p) > E[(Sk — Mno)lip, s3], V1<k<m,

then

E(XTp,>01) > E (12113<Xn Sk — Mn o ©) 1,0y

= [(Mn — My 0 90)]‘{Mn>0}i|

Z]E[Mn—MnOQD],
the last inequality holds because

E(My) = E(Mplga,>0y) + E(MnTqar,<0y) = E(Mpli,50y) + 0= E(My1,501),
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and

E(My, 0 ) = E(Mp 0 ol >01) + E(My o pliag, <0y) = E(My 0 014p7,503)-

Finally, since ¢ is measure preserving, by Lemma 5.2,
E [M,, — My, o ] = 0. [

Proof of Theorem 5.17. 1. We only need to prove the case when E(X|Z) =0, i.e.

S,
40, as.andin L.
n

2. Define
X = limsup &,
n
and let € > 0, define D = {w : X(w) > ¢}. Our goal is to prove P(D) = 0.

3.Since X (¢(w)) = X (w), we have

W_l(D) = {90_1(00) X (w)>el={w: X(¢p(w)) >e} =D,

thus D € 7.
4. Let X*(w) = (X (w) —e)1p(w),

M:;(w) = ma’X{Ov ST(W)a e ?S’Z(w)}7

F,={w: M}(w) > 0}, and

*

G = {sup S— >0},

k>1
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Then F = D.
5.E(X*1p) > 0.
6. From Step 5,

0 < E(X*1p) = E(X —£)1p) = E(X1p) — eP(D) = E(E(X|T)1p) — eP(D) = —eP(D),

then P(D) = 0. Therefore,

S,
limsup — <0, a.s.
n

Similarly,
liminf =% >0, a.s.
n
thus
& — 0, a.s

7. LP (p > 1) convergence.

Take M >0, let X}, = X1gxj<py, Xy = X — X, For Xj,, by the above proof,

—1
1 n
- D Xy(¢"w) —E(Xy|T) 0 as.
m=0
and
p 1 n—1 p
= (5 Z | X (0"w)] +E(|X§\4HI)>
m=0
1 n—1 p
< (‘— Z M| + \M!)
n m=0

= (2M)7,

-1
1 n
=3 Xigl"w) — E(X} 1)
m=0
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then by the bounded convergence theorem,

For X, we have

St

Therefore

1 n—1
lim sup — Z X(p"w) —
n—00 n 0
1 n—1
<limsup | E|— X (™w)
n—»00 n 0

2(E| X7, PP,

1 n—1
E - X/ m
nmz—o m(p"w)

ZXM ¢"w) — E(X5,|T)

e

— E(Xy|T)

- E(X)IT)

§I>—‘

IN

— 2(E|XY, ).

P) 1/p

p\ 1/p
> + lim sup

n—oo

E(X|Z)

p

— 0.

ZXMSD w)
(:LZHHXM(p w)

]

)

1/p

p\ 1/p
) + (E|E(XY D))"

+ (RE( X} P1T))

ZXMSD w)

E(

XylT)

since M is arbitrary, let M — oo, the above limit then goes to 0, now LP convergence is

proved.

5.5 Recurrence

Theorem 5.19. Let {X,, :n > 1} be a stationary sequence with X; : Q — R?. Let

n
Sp = Z Xk:a
k=1

A={w:8,(w) #0 Vn>1},
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i.e. the set of trajectories that never hit 0. Let R, = #{S1,---,Sn} be the number of points

(without repeat) visited by time n. Then

% — E(14|Z) a.s.

as n — o0.

5.6 Subadditive ergodic theorem

Theorem 5.20. Suppose X, n, 0 <m <, is a r.v. series satisfying
(1) Xom + Xman > Xon

(#) {Xnk,(n41)>s 1 > 1} is a stationary sequence for each k > 1

(iii) The distribution of { X, m4k : k > 1} does not depend on m

(1v) E(Xafl) < oo and for each n, E(Xo,) > yon for some vy > —o0

Then there exists v € R and r.v. X € L' s.t.

(a)

E(Xon E(Xon
lim EXon) _ ¢ EXon) _
n—00 n n n
(0)
XO,n

— X a.s. andin L',

n

and E(X) =~

(c) if all the stationary sequences in (ii) are ergodic, then

X =7 a.s.
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6 Brownian motion

Brownian motion is a Gaussian Markov process with stationary independent increments.

6.1 Definition and simple properties

Definition 6.1 (First definition of Brownian motion). A real-valued process B, or written

as B(t), t € [0,00) is called a Brownian motion if

(1) (Independent increment) For any 0 < tg <t < -+ < tp,

Bl(to), B(t1) — B(to), -+, B(ty) — B(tn_1)

are independent;

(2) For any s,t € [0, 00),
Bs+t — Bs ~ N(()?t);

(3) With probability 1, t — By is continuous.

Proposition 6.2 (Translation invariance). {B; — By,t > 0} is independent of By and has

the same distribution as Brownian motion {Et,t > 0} with By = 0.

Proof. 1. Let A1 = 0(By) = 0({Bo € Ap}, Ap € B(R)), and Az be the set of events of the
following form

{Btl - BO S Ala e 7Btn - Btn,l € A?’L})

where A; € B(R). Then A; and Ay are independent by the property of independent incre-
ment. They are also both 7m-system. Then o(A4;) and o(Az) are independent.
2. Claim: o(Ag2) = o({B; — By : t > 0}).

We can show U(Btl — B(),Bt2 — Btl,--- 7Btn — Btnfl) = U(Btl — B(),Bt2 — Bo, s ,Bt — Bo).

n
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Take the union over all 0 < t; < --- < t,, we have 0(Ay) = o({By — By : t > 0}). This Claim
is proved. Therefore {B; — By,t > 0} is independent of By.

3. For 0 <t; <--- <ty, we have

(Btl _B07Bt2 _Btl)”' 7Bt _Btn 1)

n —

has the same distribution as

therefore,

o(By, — Bo, By, — Bo, -+ , By, — By) = 0(By, — Bo, By, — By,,--+ , By, — By,_,)
= O-(Btlrétg - Btla e 7Btn — Btn_l)

- U(Btlvétm o JBtn>7

which means {B;— By : t > 0} and {B; : t > 0} have the same finite dimensional distribution,

thus they have the same distribution. [

Proposition 6.3 (Scaling relation). Suppose {By : t > 0} is a Brownian motion with By = 0,

then for anyt >0, {Bs : s > 0} and {t'/?B, : s > 0} have the same distribution.

Proof. We need to show they have the same finite dimensional distribution. Let s; > 0, then
let ~ N(O, 8]_t>

and

tY2B,, ~ tY2N(0, 51) = N(0, s1t),

so Bs,: and t1/2le has the same distribution. Let 0 < s1 < s9, then X = (Bs,t, Bs,t — let)T
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is multivariant Gaussian with

0 Slt 0
0 0 (82 — Sl)t
and Y = (t1/2B,,,t'/2B,, — t'/2B,,)T is also multivariant Gaussian with the same mean and

covariance matrix. By the property of multivariant Gaussian distribution, X and Y have

the same distribution. Thus

Bur\ _ (10 N A28, (o),
B, 11 t'/2B,, 11
has the same distribution. O

Definition 6.4 (Second definition of Brownian motion). A real-valued process {Bi,t €

[0,00)} with By = 0 is called Brownian motion if

(1') By is a Gaussian process, i.e. for any tg,t1, - ,tn,

(B(t()), B(t1>7 T vB(tn))

is a multivariant Gaussian distribution.

(2) For any s,t € [0,00), E(Bs) = 0, and

E(BsB:) = s A t;

(3") With probability 1, ¢ — By is continuous.

Proposition 6.5. The second definition is equivalent to the first definition with By = 0.
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Proof. (1)(2) = (1’). Notice that

B(t;) = B(tg) + B(t1) — B(to) + -+ - + B(t;) — B(ti—1),

then
B(tp) 100 --- 00 B(tp)
B(t) 110 - 00|| Btt)=B)
B(tz) =l/1 11 --- 00 B(tg) — B(tl)
B(ty) 111 --- 11 B(ty) — B(tn-1)

where (B(to), B(t1) — B(to),--- , B(ty) — B(ts—1))" is multivariant Gaussian, thus its linear
transformation (B(tg), B(t1),--- , B(t,))T is also multivariant Gaussian.
(1)(2)= (2/). First,

E(B;) = E(Bs — Bo) + E(By) =0,

second, suppose s < t,
E(BsB;) = E(Bs(Bt — Bs)) + E(B§> =Ss.

(1)(2")==(1). For any tg < t; < --- < ty, since

B(to) 1 0 0 - 0 0\ [B(t)
B(t1) — B(t) ~1 1 0 - 0 of|B@)
B(tg)—B(t1> = O -1 1 --- 0 0 B(tg)

B(ty) — B(tn_1) 0 0 0 —~1 1) \ B(ty)
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(B(to), B(t1) — B(to), - , B(ty) — B(t,—1))" is multivariant Gaussian. For k < 7,

Cov(B(te) — Bty 1), Blty) — B(tj 1)) = El(By — By ) (By, — By, )
= E[Bthtj + Btk—lBtj—l - BthtjA - Btk—1Btj]

=tk + -1 —lp —tg—1 =0,

thus the covariance matrix of Gaussian (B(to), B(t1) — B(to), -+ , B(tp) — B(t,—1))T is diag-
onal, which implies B(to), B(t1) — B(to), -+ , B(tn) — B(tn—1) are independent.
(1')(2")==(2). For any s,t > 0, Bs+t+ — B is the linear combination of two Gaussian distri-

butions, thus it is also Gaussian,

E(Bst — Bs) =0, Var(Bysy — By) = E[(Bost — B)’ = 1,

80 Bsit — Bs ~ N(0,1). O

6.2 Construction

Theorem 6.6. Define

Qo = {functions w : [0,00) — R},

and

Fo=o0({w:w(t;) € A;,1 <i<n,}),

where A; € B. Then for any x € R, there exists a unique probability measure v, on (Qq, Fo),

s.t.
e V({w:w(0)=2})=1;

e v({w:w(t1) € A1, ,w(ty) € An}) = oty . (A1 X Ao X -+ X Ay),
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where

Nw,t1,~-,tn(A1XA2><'"XAn):/ ptl(:c,m)dm/ thtl(m,xz)dem/ Dtp—tn 1 (Tn—1,Tn) dzy,
Ay

Ay An
and
( ) 1 _ (153)2
x,y) = e
b\, y ot
Proof. Check consistency and apply Kolmogorov’s extension theorem. ]

Remark. Although the construction in Theorem 6.6 satisfies Definition (1)(2) and (3), it
fails to satisfy (4). Specifically, if C' = {w : [0,00) — R is continuous}, then C' ¢ Fy. Actually,

Qp is too large and Fy is too coarse.

Lemma 6.7. For any T € Fy, there is a countable set S = Sp C [0,00) s.t. for any w € Q,
v € I satisfying
|

SZV‘S ’

we have w € T.

Proof. Let ¥ = {I' C €y : the above property holds for some countable set S C [0,00)}.
Claim: X is a o-algebra.

For any t € [0,00) and A € B(R), B; '(A) C ¥ because we can choose S = {t}. Let

A={B'(A): A€ B(R),t € [0,00)},

which is a 7m-system, and ¥ is a A-system, then by 7-\ theorem,

Corollary 6.8. C ¢ Fp.
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Proof. Suppose C' € Fy, , let S C [0,00) be the countable set in the Lemma, for a fixed

continuous function f € g, choose ¢y € [0,00) \ S, define w € Q by

1) if t # tg

fto)+1 ift=tp

w(t) =

then ty is a removable discontinuity point for w, thus w ¢ C, which contradicts the above
Lemmal [l

In order to construct the Brownian motion that satisfies all properties in the definition,
we need some preparation. The basic idea is to construct the path on the dense set Qo first,

then extend it to [0, 00).

Theorem 6.9 (Kolmogorov’s continuity theorem). Suppose {X;,t € [0,1]} is a process de-

fined on (Q, F,P), s.t. for any s,t € [0,1],
E(|X; — X,|%) < K|t — s|'F,

where o, 5> 0. If 0 < v < %, then with probability 1, there exists a constant C, s.t. for any
q,r € QQ N [07 1]7

[ X(q) = X(r)| < Clg —r[".
Proof. 1. Let

7 7 —1
Q—n)—X( on

an{w:'X( )|§2_W7 V0O <i <2}

We want to show G,, holds for any large n with probability 1. Notice that

271
> 277" for some 0 < i < 2"} C U{
i=1

1—1
on

1—1
on

G5 = {|X ()~ X () X(5) - X(1o )| > 27m,
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SO

P(Gy,) = éIP’ <'X(21n) _ X(Z;l)‘ - z—m>

on . Y
< 2(2_7”)_51[3 (‘X(Qin) - X(Z in)' ) (Chebyshev’s inequality)
i=1

2 i1t
s —
<) 2K ST
i=1
2”1
< Z 9By | fro—n(l+a)
i=1

_on  9fyn  pro—n(l+a)

= K-27"
where A = a — gy > 0.
Let Hy = (,—y Gn, then HS, =2\ GS,

o0 o0 K2—N)\
pg) < SORG < Y Ko = K2

thus

o

K 2-A
C
Nz—:lp(HN) ST oA T =%

by Borel-Cantelli lemma, P(H§, i.0.) = 0. Hence for almost sure w € §, w is only in
finitely many HY;, in other words, there exists No(w) s.t. whenever N > Ny, w ¢ Hy;, i.e.
we€ Hy =o_y Gn.

2. On Hy, we have for all ¢,7 € Q2 N[0, 1] with |¢ — | < 27,

3

X(@) = X () £ =

lg—r|.

3. From Step 1, for almost sure w, for ¢, € Q2 N [0,1], we have |¢ — 7| < d(w) = 9~ No(w),
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then from Step 2,
[ X(q) = X(r)| < Alg —r[7.

4. We want to extend the above equation to all ¢, € Q2 N[0, 1]. Suppose r — ¢ > d(w), let

So=¢q<s1<---<sp=rwith |si—si+1|:%§§(w) (thusk2%>1),then

k k k
X(0) = X0)] £ 30X (s0) = Xlsi0) < A fss—sia[ = 4D [ = Cllg =1
1=1 =1 =1

where C(w) = Ak1™7 < A. O

Now we can start to construct the desired Brownian motion.

Theorem 6.10. Define Qo = {2% :m,n € N}, and

Qq = {functions w : Q2 — R},

and

Fo=0({weQ, wt;) € 4,1 <i<n}),

where A; € B. Then for any x € R, there exists a unique probability measure v, on (g, Fy),

s.1.
e vpy({w w(0)=2z})=1;

o forany0<t; <---<t, andt; € Qq,

yx({w : W(tl) S Al, e ’W(tn) € An}) = ﬂx,th-“,tn(Al X Ag X+ X An)

The Brownian motion in this construction is continuous by the following Lemma.
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Lemma 6.11. Let T' < oo and x € R, define
A ={w € Qg : w uniformly continuous on Q2 N [0,77},

then v, (A) = 1.

Proof. By scaling and translation invariance, B; with By = = has the same distribution as

Tl/QBt/T with By = 0, we can assume x = 0 and 7'= 1. Then
Eo(|By — Bs|*) = Bo(|Bi—s — Bo|*) = Eo(|Bi—s|*) = Eo(|(t — 8)'/2B1[*) = (t — s)*Eo(|B1|*).

Apply Kolmogorov’s continuity theorem and let a = 1,8 = 4, let v < 1/4, then for almost

sure w € €, there exists a constant C, s.t. for any ¢, € Q2N [0, 1],
|B(q) — B(r)| < Clg —r[7.
For any ¢ > 0, let § = (¢/C)'/7, then for any ¢, € Q2 N[0,1] with |¢ — 7| < 0,
|B(q) — B(r)| < Clg —r|" <¢,

i.e. such path w is uniformly continuous. []
Therefore the Brownian paths constructed in Theorem 6.10 are continuous on Q2. More-
over, thanks to the uniform continuity, we can actually extend the continuity from Q2 to

0, 400).

Lemma 6.12. If f: Q2 — R is uniformly continuous, then there exists a unique continuous

function g : [0,00) - R s.t. f=g on Q.
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Now define C' = {continous functions w : [0,00) — R},
C=c({weC :w(t) el <i<n}),

where A; € B. Let € is the set of the uniformly continuous functions in Q,, by Lemma 6.12,
there exists a unique map ¢ : ) — C s.t. for any w € Q, ¥ (w) is w’s unique continuous

extension on [0, co).
Lemma 6.13. ¢ defined above is invertible and measurable.

By Lemma 6.13, we can define measure P, on (C,C) by
P,=v,0 1/171.

Now the Brownian motion defined on (2, F,P) := (C,C,P,) satisfies all properties in the

definition. We have finished the construction.

Below are two important properties related to the continuity of Brownian paths.

Definition 6.14. For " > 0, a function f : [0,00) — R is called (locally) y-Ho6lder continuous

if for every interval [a, b], there is a constant C' = C(f,, [a,b]) > 0, s.t.

[f(s) = F(O)| < Cls =8, Vst € [a, b].

If v =1, we say f is (locally) Lipschitz continuous.

Theorem 6.15 (Wiener,1923). For any 0 < v < 1/2, with probability 1, Brownian paths are

~v-Hélder continuous.
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Proof. For any m € Z, let s > t, then
E(|Bs — Bil*™) = E[((s — )/*)*™|B1*™] = Cinls — t|"™,

where C,, = E(|B1]|*™). Apply Kolmogorov’s continuity theorem and take a = m—1, 8 = 2m,

we have with probability 1, for all s,¢ € Q2 N0, 1],
|Bs — Be| < Cls —t|",

where

1
Letm—>oo,7<§. [

Theorem 6.16. With probability 1, Brownian paths are nowhere Lipschitz continuous.

Proof. 1. By translation invariance, we only need to show Brownian path is nowhere Lips-
chitz continuous on interval [0, 1].
2. Suppose t — By is locally Lipschitz continuous at s € [0, 1], then there exists C' > 0 and

d > 0 s.t. for all ¢ with |t — s| < §, we have
|B(s) = B(t)| < Cls — . (1)
Define
E ={w:3s€]0,1] s.t.B; is locally Lipschitz continuous at s},
Apc={w:3s€[0,1]} s.t. |B(t) — B(s)| < C|t —s| for all |t — 5| < §}
n

then F C U%O:1 Uzozl Apc. For 1 <k <n-—-2 let

j k+7—1
Vi = max{| B(*2) - (-~

i =0.1.2
- " ) 1 =0,1,2},
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5C
B,.c ={at least one 1 <k <n—-2s.t Yy, < —}
n
3. AmC - BmC-
s

| | o1 | | ]

I LIl I I 1

0 k-1 k k+1k+2 1

-2 k—1 k
Suppose a path w € A4, ¢. Ifogsgn—, there exists 1 <k <n—2,s.t. s €| =],
n n n
then
k k—1 k k—1 -1 k C
BE B <\BE-nB B(s)— B <Cls—""Z4cos-Y<
(&) - )] < B - 5| + B - BT < o= o B < €
kE+1 k 3C
B Bl <=
B - mh| < 2,
k+ 2 k+1 5C
B2 - p | <5
n n n

5C

0 Yy, < —,weB,c. If < s < 1, same argument can show w € B,, ¢. Therefore
n

An,C - Bn,C~

4. P, Anc) = 0.
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Notice that

< [ 100 r—>0
n 9
V2

as n — o0. Since A, ¢ C Apt1.0,

n—oo n—oo

oo
P (U Anp) = lim P(A,¢) < lim P(B,¢) = 0.
n=1
Therefore E' is contained in a null set.
E° ={w : By is nowhere Lipschitz continuous}

contains a set w.p.1., although we don’t know whether E°¢ is measurable. ]
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6.3 Markov property and Blumenthal’s 0-1 law

Definition 6.17. Suppose {B; : t > 0} is a Brownian motion, define

Fl=0o(Bi:t<s),

and
FF=*F
t>s
Proposition 6.18. F! C Fi.
Proof. For any t > s, F) C F?, thus
Fc(\F=rF O
t>s

Proposition 6.19. F. is right continuous, i.e.

7" =7
t>s

Proof. By definition,

A7 =NF=F=F O

t>s t>su>t u>s

However, F? is not right continuous.

Definition 6.20. For 2 € R?, suppose B;(w) = w(t) is a Brownian motion on (C,C,P,). For

s > 0, define the shift transformation 0, : C' — C by
Os(w(t)) =w(s+1t), tel0,00).

Theorem 6.21 (Markov property). Suppose s > 0,Y : C' — R is bounded and C-measurable,
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then for any x € RY,

E.(Y 0 bs|FS) =Ep.(Y)

Proof. This proof is very similar to the proof of Theorem 3.8.

1. By the definition of conditional expectation, we only need to show for any A € F;,
E[(Y o0)14] =E[Ep, (V)1 4].

Corollary 6.22. E,(Y o 6,|F}) = E,(Y o 6,|F?).

Proof. By Theorem 6.21,
Eo(Y 0 05| ) = Epy)(Y) € FJ C 7,
then Proposition 1.7 implies
Eo(Y 0 04| F) = Eo(Y 0 6] FD). O
Proposition 6.23. If Z is bounded and C-measurable, then for any s > 0 and x € R,
E.(Z|FS) = Ea(Z] 7). (1)
Proof. We only need to prove the case when
2= T (Bt
m=1

where t] < t; < --- < t, and f,, are bounded and measurable. Suppose t;, < s, let

k
Zi = |1 fm(B(tw)) € F) € i,
m=1
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and

Zy= ] Fn(Bltm)) =Y o,

m=k-+1

for some C-measurable Y, then Z = 7175 = Z1(Y o 0s). Therefore

Eo(Z|FF) = B[ Z1(Yoby) | Fi] = Z1E,[Y by | FT] = Z1 By [Y 0l | FO] = Eo[Z1(Y 08,)| FO] = E

Corollary 6.24. F} and FO are the same up to null sets.

Proof. First FY C Ff. Let Z is F}-measurable, then by Proposition 6.23,
7 =R(Z|FH) =E(Z|F%) as,

so Z is FO-measurable except for some null sets. Thus F;- C FV except for some null sets.

Theorem 6.25 (Blumenthal’s 0-1 law). If A € F;", then for any x € R%,
P,(A) € {0,1}.
Proof. Since 14 € FJ and F = o(By) = {@,Q} is trivial, thus
1g =Eo(14lF)) = Eu(14) = Po(A4), as.

therefore almost surely P, (A) € {0,1}.
Remark. We call 7 germ field, and Blumenthal’s 0-1 law implies germ field is trivial.

Proposition 6.26. If 7 = inf{t > 0: B; > 0}, then Po(r =0) = 1.
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Proof. 1. By {B; > 0} C {7 <t} and B; ~ N(0,1),
1
Po(r <t) > Py(By > 0) = 5

1
2. Since {7 < =} | {r = 0}, by the continuity of measure, we have
n

X 1 1.1
=0) = <3| =1 <) > -
Po(r = 0) = Py (DO{T < n}) lim Po(r < ) > o
3. {7 <t} C{B; >0} € F implies
{r=0y=(V{r<tter,
t>0
thus by Blumenthal’s 0-1 law (Theorem 6.25), Po(7 = 0) = 1. O

Remark. This result says Brownian path starting from 0 must immediately hit (0, +o0),

also immediately hit (—oo,0) by symmetry.

Proposition 6.27. Suppose {Bs : s > 0} starts from 0. Let Ty = inf{t > 0 : By = 0},
Z={t>0:B;=0}. Then with probability 1,

1. Brownian path changes its sign infinitely many times in any interval [0,¢] (£ >0).
2. Th = 0.
3. 0 is an accumulation point of Z.

Proof. 1. Let 7/ = inf{t > 0: B; < 0}. By Proposition 6.26, for each path w € {r = 0}n{r’ =
0} (w.p.1.), we have inf{t > 0: B; > 0} =0, i.e. for any ¢ > 0, By, > 0 for some ¢y € (0,¢).
Thus there is a sequence t,, | 0 with ¢, € (0,t,—1) (so all different), s.t. By, > 0 for all n € N.
Similarly, there is a sequence s, | 0, s.t. Bs, <0 for all n € N. Therefore the path w changes

sign infinitely many times.
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2 and 3. For each path w € {7 = 0} N {7’ = 0} N {continuous paths} (w.p.1.), by continuity
and B, < 0, By, > 0, we can find u,, between s,, and t,, s.t. B,, = 0. Moreover, the sequence

up J 0, which implies Ty = 0 and 0 is an accumulation point of Z. ]

Lemma 6.28 (Law of large number for Brownian motion). Suppose {B; : t > 0} starts from

0, then

Proof. For integer case, Since By+1 — By, ~ N(0,1), by the strong law of large number,

1
Bn — 0 (Bnt1— By) — 0, a.s.
n n

For real values between integers, we will use Kolmogorov’s inequality (Theorem 2.22). For

m € Z+, let

1
then Xi ~iad. N(O, Q_m) Let

k
k
Sy = ZXZ = B(?”L—i— 2—m) — B(n),
=1

k
k
we have Var(S;) = ZVar(Xi) = om- By Kolmogorov’s inequality,
i=1

IP’( sup |B(n+ i) — B(n)| > n2/3) _ IP’( sup |Si| > ng/g) < Var(Som) ) 1

1<k<2om

nA/3 T gmpd/3 T A3

let m — oo, we have

P sup [Bu)—Bw)|>n??*) <.
ten,n+1] nd/
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= 1
Since Z e < 00, by Borel-Catelli lemma,
n=1
P| sup |B(u)— B(n)|>n*? io | =0,
te[n,n+1]
which means for almost sure w,
sup |B(t) — B(n)| > n?/3
te[n,n+1]
holds for only finitely many n, i.e. for all large enough n,
sup |B(t) — B(n)| < n?/%,
te[n,n+1]
Therefore for any large enough ¢, let [¢t] be the integer part of ¢,
By | By| 1
<P _ 2B, By, +B
=T T Pt Bl
1 | By
< —|Bt — By +
1 G
112/3 B
S 1Bal
[2] 2]
n

Proposition 6.29. Suppose By is a Brownian motion with By = 0. Define

then {X; : t > 0} is also a Brownian motion starting from 0.

Proof. Check the definition of Brownian motion.
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(i) For 0 < t1 <to < -+ < tp,

(X(t2), X (0) = (B(), B )

is multivariant Gaussian.
(ii) For any ¢ >0, E(X;) = E(tB ) = 0
(iii) For any 0 <t < s,

E(XtXS) = E(tSB]_/SBl/t) =1s- l =1.
S

(iv) For ¢t > 0, since B; and 1/t are continuous, their composition B(1/t) is also continuous,

thus X; is continuous on (0,00). For ¢t = 0, by Lemma 6.28,

lim X (¢) = lim tB(l) = lim B(s)

t—0+ t—0+ t s—+o0 S

= 0= X(0),

thus X(¢) is also continuous at 0.

O
Theorem 6.30 (Kolmogorov’s 0-1 law). If A€ T = (;5¢0(Bs : s > t), then Py(A) € {0, 1}.

Proposition 6.31. Suppose B; starting from 0 is a Brownian motion in R, then almost
surely,

. By
limsup — = oo, lim 1nf = —00.
o0 t t—00 \/_

Proof. Notice

li B Sy
imsup — > limsup —=,
t—o0 \/% n—00 n

so we only need to show the integer case. Let K < oo, then by scaling invariance

B, : ,
— > K i.0.) > limsupPy(B, > Kv/n) =Py(B; > K) > 0.
\/ﬁ n—00
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And
Bn
NZD

thus by Kolmogorov’s 0-1 law (Theorem 6.30),

> Kio}= () U{%ZK}ET,

m>1n>m

By, . By, , . B, o
Since A = {% > K i.o0.} ] {% = o0 i.0.} = {limsup —= = oo}, by the continuity of

n—00 \/ﬁ

probability, we have

By,

Py (li = = lim Py(Ag) = 1.
o imsup =5 o0) = lim Po(Ak)
The liminf case is also true by symmetry. ]

Proposition 6.32 (one-dimensional Brownian motion is recurrent). Suppose By is a Brow-

nian motion in R, let

A= m{there exists some t > n s.t. By =0},
n

then Py (A) =1 for any z € R.

Proof. For any continuous Brownian path B; (w.p.1.), by Proposition 6.31 and translation

invariance (B,, — By is a Brownian motion starting from 0), there are infinitely many m,n €
B B

Zy st. —/= = —oo and — = 00, s0 B,, < 0 and B, > 0 i.o. By continuity, B, = 0 for

io. k€ Z;. (Take Ny > 0, we have By, > 0 and B,,, < 0 for some mj,n; > Ny, then there

must be some k1 between m; and n; s.t. Bg, = 0. Take Ny = ky, repeat this step, we can

construct a sequence k; T oo s.t. By, = 0). Therefore

A=Y U{Bn=0}={B,=0i0}

n m>n
has probability 1. [
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Based on the above discussions, we can improve our filtration by adding all null sets.

Definition 6.33 (Filtration of Brownian motion). Let

Ny, ={A€F:ACD,Py(D) =0}

Fo=[F7.

Fs is called the filtration of Brownian motion.
Remark. F; does not depend on the initial state and is right-continuous.
At the end, we introduce two alternative forms of Markov property.

Theorem 6.34. Fort > 0, suppose Y is a bounded and o(Bs, s > t)-measurable, then
E,(Y|F) =Ex(Y|By).

Proof. Y 060_; is bounded and C-measurable, applying Markov property (Theorem 6.21), we
have

]Ex(Y|»Ft) = EI[(Y o 9—t> o 0t|ft] = EBt(Y o e_t) S O'(Bt),

Taking conditional expectation on B, we have
Eo[Ee(Y[Ft)[Bi] = Ex[Ep, (Y 0 01)| B,

the left side above is E;(Y|B;) since o(B;) C F;, the right side is Ep, (Y 0 0_;) = E.(Y|F),
therefore

E.(Y|F) = Ee(Y]By). U

Theorem 6.35. Suppose {B; : t > t} is a Brownian motion with By = x, for any s > 0,

{Bi4+s — Bs : t > 0} is a Brownian motion starting from 0 and independent of Fs.
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Proof. For any bounded and measurable function f, g, let Y € Fs, then for any ¢ > 0,

Eo[f(Bt+s — Bs)g(Y)|Fs] = g(Y)Ea[f (Bits — Bs)|Fs]
= g(Y)Ey[f(Btys — Bs)|Bs]

= g(Y)]E:E [f(Bt+s - BS)]?

take expectation on both sides, we have

Eolf(Btrs — Bs)g(Y)] = Eelg(Y)|Eolf (Brys — Bs)),

therefore B;ys — Bs and Fs are independent, hence o(B;+s — Bs : t > 0) and F; are indepen-

dent. O]

6.4 Continuous stopping time

Definition 6.36. We call r.v. S a stopping time if for all ¢ > 0, {S < t} € F;.

Lemma 6.37. S is a stopping time if and only if for allt >0, {S <t} € F;.

Proof. Suppose {S <t} € F;, then since F; is right continuous,

{Sgt}:ﬁ{5<t+%}e}}

n=1

Proposition 6.38. Let S, T be stopping times. Then
e« SAT
e SVT
e S+T

are all stopping times.
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Proposition 6.39. Suppose {T), : n > 1} is a sequence of stopping times. We have
1. If T, 1T, then T is a stopping time.

2. If T,, L T, then T is a stopping time.

3. sup,, 1T, and inf, T,, are stopping times

4. limsup,, T,, and liminf,, T}, are stopping times

Proposition 6.40. Let A C R be a set. Define Ty =inf{t > 0: B, € A}. Then

1. If A is an open set, T4 is a stopping time

2. If A is a closed set, Ty is a stopping time

3. If A is a countable union of closed sets, Tx is a stopping time.

Proposition 6.41. If S <T are both stopping times, then Fs C Fp.

Proposition 6.42. If T, | T are stopping times, then

Fr={)Fr.

n=1

Proposition 6.43. If S is a stopping time, then Bg € Fg.

6.5 Strong Markov property

Theorem 6.44. Let (s,w) — Yi(w) be bounded and B(R) x C measurable. If S is a stopping

time, then for any v € R, on {S < oo},

E:r(YS @) 95’./—"5) = EBSYS'
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6.6 Path properties

6.6.1 Zero set

Definition 6.45. Suppose w is a path of Brownian motion, define the zero set as Z,, = {t >

0: B; = 0}.

Proposition 6.46. For a.s. path w € Q, Z,,
1. has Lebesgue measure 0,

2. 1is closed and unbounded,

3. has no isolated point,

4. is dense in itself (perfect set),

5. 1s uncountable,

6. has Hausdorff dimension %

Proof. 1.For any t > 0, By ~ N (z,t) under P,, then
Ey(lyez,y) = Pu(t € 24) = Po(B: = 0) =0,
therefore by Fubini’s theorem,

Blm(Z) =Eul | Lyezydtl = | Eullgezldt =0

2. To prove a set is closed, we only need to show it contains all its limits. Let w be a

continuous path (w.p.1.). For any sequence t, € Z,, if t,, — t, then by the continuity,

B(t) = lim B(t,) =0,

n—oo
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thus t € Z,. Z unbounded is proved in Proposition 6.32.

3. Let Ty = inf{t > 0 : By = 0}. By Proposition 6.27, Py(7p = 0) = 1. For any ¢t > 0, let
R; = inf{u > ¢ : B, = 0}, by Propostion 6.32, there exists n >t (w.p.1.) s.t. B, =0, thus
R; < n < oo a.s. By the definition of inf, there is a sequence ¢, in Z N (¢,00) s.t. t, — Ry,

then by continuity, R; € Z. Now applying the strong Markov property, we have
Eq[l{ry=0} © Or,|FR,) = EB(r,)(L{1y=0}) = Po(To = 0) = 1,
take expectation, we have for any ¢ > 0,
P,(Topobp =0)=1.

Let Ay = {w:Tpo6bg, >0}, then A; is null, thus the union over all rational numbers

A::UAt

tcQ

is also null, which implies on Q\ A (w.p.1.), Tpofg, = 0 for all rational ¢. For path w € Q\ A,
take u € Z,: if u = R; for some rational ¢, u is obviously not isolated from the right; if
u # Ry for any rational ¢, there is a rational sequence t, s.t. ¢, T u. Since t, < Ry, < u, we
obtain a sequence Ry, in Z, s.t. Ry, — u. Therefore Z,, is not isolated w.p.1.

4. Closed set without isolated points is dense in itself.

5. Perfect set is uncountable (See [6]).

6. O

6.6.2 Hitting time and maximum

Definition 6.47. We say {X; : ¢ > 0} has stationary increments if for any ¢,h > 0, the

distribution of X; 5, — X; only depends on h not t.
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Proposition 6.48. Let T, = inf{t > 0: By = a}, then under Py, {T,,a > 0} has stationary

independent increments.

Proof. 1. (stationary increments). If 0 < a < b, then

TbOQTa :Tb—Ta.

Then for any bounded and measurable f, by strong Markov property and translation invari-

ance, we have

thus

Eolf (T — Ta)] = Eolf (Th-a)],

which implies T}, — T, has the same distribution as Tj_,.

2. (independent increments) Let ayp < a3 < -+ < ay, for any bounded and measurable
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H fZ a; — az 1 Tan_ll

K, H Ji(Ta; = To B0 | fulTa, = Ta, ) fTan_l}]

functions f1, -, fn,

Eo

HfZ a; — az 1

:E() Hfz a;i — aZ 1 IEO [fn( an _Tanq)]

:EO Hfz a; all

]EO [fn( - Tan—1>] )

by induction, we have

IEO [H fi(Tai - TGi—l)

1=1

H [fl< - az 1)]7
=1

thus T,, — T;—1, 1 <1i < n are independent. ]

Theorem 6.49 (Reflection principle). Let a > 0, then
PO(TG S t) = 2P0(Bt Z a).

Proof. We can just modify the proof of Theorem 3.12. Fix ¢ > 0. Let S = inf{s <t : By = a},

define inf @ = co. Notice that
{S <t} ={S <0} ={T, <t}

For s < t, define

Yo =1(B, ,>a}
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then Ys 005 = 1yp,>q). On {S < oo} = {5 <t},
Yso00s(w) = 1(p,>a}, (1)
and by the strong Markov property,
Eo(Ys 0 05|Fs) = Ep(Ys). (2)

For s <t,

1
]Ea(Ys) = IEDa(Bt—s > @) = 57

thus on {S <t}, Bg = q,

1
Ep,(Ys) = 5

Since {S <t} € Fg, applying the definition of conditional expectation to (2), we have
1 1
Eo(Ys 0 0slis<ry) = Eo[Eps(Vs)Lis<y] = Eol5L{s<n] = SPo(S < 1),
and by (1),
Eo(Ys 0 0slis<iy) = Eo(l{B,>ayn{s<ty) = Po({Bt > a} N {S < t}) = Po(B; > a),

since {B; > a} C {S <t}. N

Theorem 6.50 (Generalized reflection principle). Let a > 0, z < a, then
Po(T, <t,B; < x)=Po(Bt > 2a — x).

Proof. Let S = inf{s <t : By = a}. Define inf@ = oo. Let Y5 = lycnlyp, <a}, Zs =
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Lgs<iy1qB,_,>20—2}- By symmetry, we have

And

Ysobs =1is<il{B,<z}: Zs©o0s=1{s<yl{B,>2a—2}-

By the strong Markov property, on {S < ¢},
Eo(Yso0g|Fs) =Ep.Ys =Ep,Zs =Eo(Zg 0 05| Fs),

thus

Eo(Ygobg) =Eo(Zgobyg),

which is

Po(S <t,B <x)=Py(S <t,B > 2a—z). (1)

Since {S <t} ={T, <t} and {By > 2a —z)} C {S <t}, (1) becomes
]P)o(Ta St,Bt §$) :Po(Bt 2 2@—1‘). []
Proposition 6.51 (Density of T,). Let a > 0, then

Po(T, € dt) = e 7 L0y dt.

213
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Proof. By Theorem 6.49,
]P)()(Ta < t) = Q]P)O(Bt > CL)
= 2 /OO e /2% 4y
V21t S,
2 ’ Y -1
= e (——)du  (let z = u" 1?2
—/ . () )
1 1/a® .
_ —1/2ut —3/2d
= e u u
v 2t /0
= (2mt)~1/2 te_a2/25(i)_3/2i ds (let u = i)
0 ta? ta? ta?
t 3
0 t3 t
t 2
a a
= exp(——)ds.
/0 s p(=5;)
]
Remark. We have Ey(7;) = oc.
Corollary 6.52 (Density of T, — T;,). Let 0 < a < b < oo, we have
b— —a)?
Po(Tb —T, € dt) = ¢ 6_(b 2t) 1{t>0} dt.
273 -
Proof. From Proposition 6.48, T, — T, has the same distribution as Tj_,,. ]

Definition 6.53. Define the maximum process of Brownian motion as M; = maxo<s<¢ Bs.

Remark. M; has some simple properties:
1. From Proposition 6.26, M; > 0 for any ¢ > 0.
2. t+— M; is increasing.

3. (M, >a} = {T, < t}.
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Corollary 6.54 (Density of M;). For anyt > 0,

Po(Mt € da) = e ﬂ{aZO} da.

2
V27t

Proof.

2 a
Po(M; < a) =1~ Bo(My > a) = 1 = By(T, < 1) = —— / a2 gy
\% 0

Proposition 6.55. For any t > 0,

2t
EO(Mt) = ?

Proposition 6.56 (joint distribution of M; and By).

2(2a — ) _(a—o)?
; - 2t 1 a 1 a>xt:
fou, ) a, ) o {a>0}L{a>z}

Proof. From Theorem 6.50.

Proposition 6.57. For a firedt >0, My, My — By, and |By| have the same distribution.

Proof. 1. From Theorem 6.49,

Po(M; > a) = Po(T, <t) =2Py(B; > a) = Po(|Bi| > a),

so M; and |By| has the same distribution.

2. Let U= M;— B,V = By,ie. My =U+V, B, =V. We will compute the joint distribution

of (U,V) from Proposition 6.56. The Jocobian is
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|J(a,x)| = 1. Therefore the joint density of (U, V) is

f(MtaBt)(a7 x) o 2(2u + U) 7(2“2%)2

fonte D =2 o = s ¢tz teeo

then the density of U is

22u 4 v) _euiw?
fulu) = / ———2e 2 1 dv
(u) Y Vont3 {u>0}
 2(2u + ) t
=1 o dz  (let 2 = (2u+v)?/2t
{u>0 /1142/2)5 We 2+ v < (ez (U U)/ )
o 2
=1 e “dz
{UEO} /1;2/2,5 V 2mt
2 u?
== e_ﬂﬂ N
Vomt =
which means U = M; — By has the same distribution as M; (Corollary 6.54). O

6.6.3 Arcsine laws

There are three arcsine laws in Brownian motion. Based on previous results, we are already

able to prove two of them!

Lemma 6.58. Let Tp = inf{t > 0: B, =0} and L =sup{t < 1: B, =0}. Then

Pk <= [ m0.w)RT > 10y

—0o0

Proof. Let Ry ={u>t: B, =0}, then {L <t} ={R; > 1}. Notice that Tyo0; +t = Ry, thus
Lirys1-0 00t = Lipyon,>1-1) = YyRr,—t>1-1) = Lir<t}-
By Markov property, we have

Eo[L{r<iy|Ft] = Eo[l{zy>1-4} © 64| Ft] = Ep,(L{7y>1-4y) = P, (To > 1 — 1),
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take expectation on each side, we have
Po(L <) = Eo[Pp,(To > 1 —t)]
= /Py(TO >1—1t)Py(B; € dy)
= /Py(TO >1—1)p(0,y) dy.
O

Theorem 6.59 (Arcsine law). Let L = sup{t € [0,1] : B, = 0}, then

Po(L <t)= 2 arcsin(v/1).

- s
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Proof. By Lemma 6.58, we have

Po(L < t)

/ (0, 9)B,(To > 1 — 1) dy

—00
[©.9]

pt(0,y)Po(Ty > 1 —1t)dy

2 [ im0 - Po(r, < 1- 0]y
0

o0 6_y2/2t o0 ye_yQ/QS
2/ dsdy (by Proposition 6.51)
0

V2ort . 1t V2ms3

Y N RN _(t+ )y
7T/0 /1_t(ts ) yexp | ——— dsdy
t+ 5)y?

l/ (ts3)~1/2 ds/ exp (—(—> ydy (Fubini’s theorem)
1-t 0 2ts

L[ 3172 = (t+s)u 2

_ — 1 =

o 17t<t5 ) ds i exp T du (let u = y*)

l/ (t33)—1/2t_5 ds

T J1_t t+s

1 [ 11/24-1/2

_/ OC IR

T 1—¢ t+ S

0 1/2 _

l/ t—x2—32dx (let & = s~1/?)

T Jiyyizit+1/2? x

or1/2 (MVITE

— ——dz

T Jo 1+ ta?

2 arctan( ! ) (Since/ ! d ! arctan(vtz) + C )
= — — ——dr=— x

m 1—t 1+ ta? Vit
_2 arcsin(v/t).

™

O

Theorem 6.60 (Another arcsine law). Let M = argmax,c(g ) By = inf{t > 0: By = M},

then

Po(M <t) = 2 arcsin(v/t).

- T
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Proof. By Proposition 6.57, M; — By and |B;| has the same distribution,

Po(L = sup{t € [0,1] : B; = 0} < s)
= Po(sup{t € [0,1] : [Be[ =0} < s)

= Po(sup{t € [0,1] : M; — B, = 0} < s)
= Py(inf{t > 0: By = My} < s)

=Po(M < s),

therefore M and L have the same distribution. O]

6.7 p-variation and quadratic variation

Definition 6.61. 1. We say II = {to,t1,--- ,t,} is a partition of the interval [0, T if

O=to<ti<---<t,="1T.

2. The mesh (maximal interval length) of the partition II is

II| = max |t — trl.
11| 0§k§n—1|k+1 Kl

3. The p-variation of function f : [0,7] — R over partition II is
VP(£,[0,T0,00) = | £(tk) = Fltr-1)IP.
k=1

4. The p-variation of function f:[0,7] — R is
n—1

VP(£,[0,T]) = sup Y | f(tr1) = (1)

k=0
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5. The quadratic variation of f:[0,7] is

QV(R0.7) = Jim V(1. [0.7).ILy).

where {II,,}°°_; is a sequence of partition s.t. their mesh shrinks to 0. Sometime we

denote quadratic variation as [f, f](7).

Remark. 1. Quadratic variation is a different concept from 2-variation, and

QV(f,[0,T]) < V(£,[0,T]).

2. For the random process {X; : ¢t > 0}, we can define p-variation over the partition II for
each path w € Q (the partition does not depend on w), which is a random variable. And the
quadratic variation of X; can be viewed as a limit (convergence in probability, L? or a.s.) of

a sequence of random variables.

Theorem 6.62. QV (By,[0,T]) = T in the sense of L? limit.

Proof. Suppose Il = {0 =ty <t; <---<t, =T} First, we have

n—1 n—1 n—1
E[VZ(Bt7 [O’ T]v H” =E Z |Btk+1 - Btk|2 = ZE[|Btk+1 - Btk|2] = Z(thrl - tk) =T.
k=1 k=1 k=1
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And
n—1
Var[V2(By, [0,T],1)] = Var | Y " |By,,, — B[
k=1
n—1
= Z Var(|By,,, — B, |*] (by independence)
k=1
n—1
= ZVar[(tkH — t1)€7] (here &, ~ N(0,1))
k=1
n—1
=2) (1 —t)*  (Var(&g) =2)
k=1
n—1
< 2max(tprn — ) ) (ter — )
k=1
— 2||T — 0,
as |II| — 0. Therefore
E[|[V2(By, [0,T],1T) — T|*] = Var[V*(B,[0,T],1I)] = 0, as |[II] = 0. O

We will see two corollaries of Theorem 6.62.

Lemma 6.63. If f : [0,7] — R is continuous, and Il = {0 =ty <
of [0,T]. Then

max | f(tgs1) — f(te)| — 0,

0<k<n—1

as |II| — 0.

oo < tn, =T} is a partition

Proof. Any continuous function is uniformly continuous on a closed interval, so for any ¢ > 0,

there is 0 > 0 s.t. for any s,¢ € [0,7] with |s —¢| < 4,

[f(s) = F(t)] <e.
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So we can choose |II| < 0, then |f(tg11) — f(tx)| <e for all k=0,--- ,n — 1 and thus

max |f(ts1) — £(t)] < =

i.e. its limit is 0 as |II| — 0 O

Corollary 6.64. Let VP(By, [0,T)) be the p-variation for the Brownian motion.
(1) If p> 2, VP(B,[0,T]) < o0 a.s.

(2) If 0 <p <2, VP(B:,[0,T]) = o0 a.s.

Proof. (1)By the y-Hélder continuity of Brownian motion for any v € (0,1/2), there is C' > 0
s.t.

|B: — Bs| < C|t —s|", Vt,sel0,T], a.s.

Therefore choose v = 1/p < 1/2, we have w.p.1.

n—1

Vp(Bv [O’ T]) = sup Z |Btk+1 - Btklp
T =0
n—1

<sup > CPlteyy — ty"?
T o
n—1

= CPsup Y (ter1 — tr)
T o
= (CPT < .

(2)Suppose there is an event A € F s.t. P(A) > 0 and VP(B(w),[0,1]) < oo for all path
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w e A. For partition I ={0=ty <--- <t, =T},

n—1
VQ(Btv [O’ T]v H) = Z |Btk+1 - Btk|2
k=0
n—1
= Z |Btk+1 - Btk|p|Btk+1 - Btk‘z_p
k=0
n—1
< mI?X |Btk+1 — Bth_p ;) ‘Btk-&-l - Btk‘p

2—p
< (mgx By, — Bm) V(B,[0,T))

Since By is continuous for all paths in some set Ay with P(Ag) = 1, by Lemma 6.63, we have

for any path w € AN Ay (easy to check P(AN Ap) > 0)
lim V3(B(w),[0,T],1) = 0,
|II]—0

then

E[|[V(B(w),[0,T],11) = T|*] > E[|[V*(B(w), [0, T],11) = T|* 1 4n4,] = E[14n4,] = P(ANA4g) > 0,

thus
lim E[|V2(B(w),[0,T],1I) — T*] > P(AN Ag) > 0,
|TT|—0
which contradicts Theorem 6.62. O]

Corollary 6.65. Brownian motion is nowhere vy-Hdlder continuous for v > 1/2.

Proof. For a fixed interval [a, b] with a,b € QNJ0, c0), suppose on a non-null set A € F, By is

v-Hélder continuous on [a, b] for v > 1/2. Then for any partition Il = {a =1ty < --- < t, = b}
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and for any path w € A,
n—1
VQ(B(W)’ [a’ b]? H) = Z ’Btk+1 (w) — By, (w)‘z

k=0

n—1
<CPw) Y ftryr — til”
k=0

n—1

<2 291 _
< CF(w) max [ty — ty| > Jterr — il
k=0
= C?(W)|IP (b —a) — 0,
as |II| — 0, which contradicts Theorem 6.62 (By the same argument in Corollary 6.64).
Therefore for v > 1/2 and any rational interval [a, b] C [0, c0),

P (B is v-Holder continuous on [a, b]) = 0,

then by the fact that countable union of null sets are still null, we have

P (B, is y-Holder continuous on some rational interval [a,b] C [0, 00))

=P U {B; is y-Holder continuous on [a,b]} | = 0.
a,beQN[0,00),a<b

If B; is y-Holder continuous on some interval [a,b], then B; is also y-Hoélder continuous on

any closed interval [c,d] C [a,b]. Therefore,

PP (there is no interval [a,b] C [0,00) s.t. By is y-Holder continuous on it)
= P ({ By is y-Holder continuous on some real interval [a,b] C [0, 00)}€)

= P ({B; is y-Hélder continuous on some rational interval [a,b] C [0,00)}¢) = 1.
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Remark. This corollary provides a second proof of Theorem 6.16.

Almost sure convergence

In what condition, the quadratic variation of Brownian motion will be the almost sure limit?

Theorem 6.66. Let {I1,,}*°_, be a sequence of partition of [0,T] with |IL,,,| — 0. If

(0. 9]
> M| < oo,
m=1

then
V3(B,[0,T],II,) = T, a.s. as || — 0.

Proof. Let V.2 := V2(By,[0,T],11,,), by the proof of Theorem 6.62, we have
Var(V;2) < 2|IL,|T.

then by Chebyshev’s inequality, for any ¢ > 0,

_ Var(V3) 2/l |T

2
P(VZ-T]>¢) <~ 5

Summing over m, we have

o0
Y PV —T|>¢) < o,

m=1

by Borel-Cantelli Lemma, we have
P(|V2 —T| > e, i.0.) = 0.

Let A :={|V2 —T| > ¢, i.0.}, then for w € A¢ (P(A°) = 1), |V;2(w) — T| > € holds only for
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finitely many m, i.e. there is N > 0, s.t.

Vialw) =T <e, ¥m=>N,

which means V,2(w) — T. L

Theorem 6.67. Let {11,,,}°°_; be a sequence of partition of [0, T] with |IL,,| — 0. If {IL,}5°_;

is nested, i.e. II{ CIlp C --- C1II,, C---, then
V3(B,[0,T],,) =T, as.  as || — 0.

6.8 Martingale

Theorem 6.68. Suppose X; is a right continuous martingale w.r.t. a right continuous

filtration, T is a stopping time. If P(T < k) =1 for some k, then E(X7) = E(X)).

Proposition 6.69. Suppose {B; : t > 0} is a Brownian motion starting from x, then

1. By
2. B? —t
3. eeBt—tHQ/Q

are martingales w.r.t. F;.

Proof. 1. By Markov property, for any 0 < s <'t,

Ex(Bt‘—Fs) = Ex(Bt—s © 93|-7:s) = EBS<Bt78) = B,

the last equality holds because B;_4(starting from Bg)~ N (Bs,t — s).
2. E.(B?|Fs) = Ep, (B2 ,) = Varg (Bi—s)+|Ep,(B;_s))? = t—s+B2, so E,(B?~t|Fs) = B2—t.
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3. Similarly, we have
Ex<€93t|fs) _ EB (eGBt_S) _ €9BS+(t75)92/2’

since for X ~ N (u,0?)

5% P S 0-+0262 /2
E(e") = et 22 dz=e :
o o

Theorem 6.70. Ifa < x < b, then

b—=x
b—a’

Pm(Ta < Tb) =

Proof. Let T =T, ATy, then by Proposition 6.31, T' < co a.s. (Because w.p.1. B, = co and
By, = oo for i.0. m,n € Zy). Thus for any t € [0,00], T At < co. Thus by Theorem 6.68 and

Proposition 6.69,
ECC(BT/\t) = ]Ex(BO) = .

Since |Brat| < |Br| < |a| + |b| < 0o, by bounded convergence theorem,
E,(Br) = lim Eq(Bra) ==,
then
v = By(Br) = alPy(Br = a) + 0Py (Br = b) = aPy(Ty <Tp) + b[1 — Po(To < Tp)],

i.e.
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Proposition 6.71. Let a <0< b, T =inf{t > 0: B; ¢ (a,b)}. Then
EO(T) = —ab.
Proof. Consider bounded stopping time T A t, since B? — t is a martingale,
Eo(Bf — T At) = Eo(Bf — 0°) =0,
L.e.
Eo(Bfn) = Eo(T At).
Since T'At T T, by the monotone convergence theorem,
tli{glo Eo(T AN t) =Eo(T).
By |BZ.,,| < a? V b? < 0o and bounded convergence theorem, we have
lim Eo(B},) = Eo(B7),
t—00
thus
Eo(T) = Eo(B7)
= (IQIP)()(BT = a) + bzpo(BT = b)
= a’Py(T, < Tp)) + b*[1 — Po(T, < T3)]
b b
2 2
= a?. b2 (1 —
¢ b—a 0 b— a)
= —ab.
]
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Proposition 6.72. Let a,A >0, T, = inf{t > 0: B; = a}, then

E()(ei)‘Ta) _ efa\/ﬁ.

Proof. Since ¢(t) = B2 ig martingale,

Eo(p(Ta At)) = Eo(v(0)) = 1.

Bounded convergence theorem (B7, o < a, so ePTart < ¢%) and monotone convergence theo-

rem (e(TaAt)92/2 1 6T092/2) give
Eo(o(T, At)) = Eo[eeBTaAt*(Ta/\t)Qz/Q] _ Eo[eeBTafTaem] _ e&aEO[efTa02/2]’

therefore

E()(efTa@Z/Q) _ 676'a

Y

taking § = —v/2\ gives the desired result. [

Theorem 6.73. If u(t,x) is a polynomial in t and x satisfying

ou n 10%u 0
ot 20x2
then u(t, By) is a martingale.

Proposition 6.74. Fora >0, let T =inf{t > 0: By ¢ (—a,a)}. Then

1. By and T are independent.

2. Eo(T) = a?.
4
3. Bo(T2) = 2L
3
61a®
3\
4 Eo(T?) =
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