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This note provides a detailed overview of the graduate course Probability (MATH641)

instructed by Prof. Quanjun Lang. The course was remarkably interesting, covering a wide

range of advanced probability theory topics, including martingale, Markov chain, ergodic

theory, and Brownian motion. I primarily use this summary note for review purposes after

each lecture. The content is mainly sourced from Durrett’s book [2] and Prof. Lang’s

lectures. I’ve reorganized many proofs myself to ensure a thorough examination of each

detail, though some steps may appear trivial. I also added a few theorems I read from other

books (like [5]) or online lecture notes. Thank you for taking the time to read this note if

you happen to find it online.
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1 Conditional expectation

1.1 Definition of conditional expectation

Definition 1.1. Suppose X : Ω → R is a random variable (r.v.) on the probability space

(Ω,F0,P) and X is integrable (i.e. E(|X|) < ∞). F ⊆ F0 is a sub-σ-field. We call r.v.

Y : Ω → R the conditional expectation of X given F if it satisfies two conditions:

(1) Y is F-measurable (or Y ∈ F for short).

(2) E(X1A) = E(Y 1A) for any A ∈ F .

We denote Y by E(X|F).

Theorem 1.2. Given the conditions in the above definition, such r.v. Y exists and is unique

(in the sense of “almost sure”).

Proof. Uniqueness. Let Y, Y ′ be two r.v. that satisfy conditions (1) and (2). Then Y, Y ′ ∈

F and for any A ∈ F , we have

E(Y 1A) = E(Y ′
1A) = E(X1A).

Taking A = {ω ∈ Ω : Y − Y ′ ≥ ε > 0} for any ε > 0, then A ∈ F (because Y − Y ′ ∈ F and

(Y − Y ′)−1([ε,∞)) ∈ F), and

0 = E(Y 1A)− E(Y ′
1A) = E[(Y − Y ′)1A] ≥ E(ε1A) = εP(A),

hence P(A) = 0 for any ε > 0, in other word, P(Y −Y ′ ≤ 0) = 1. Similarly, P(Y −Y ′ ≥ 0) = 1,

then

P(Y = Y ′) = P(Y − Y ′ ≤ 0)− P(Y − Y ′ < 0) = P(Y − Y ′ ≤ 0)− P({Y − Y ′ ≥ 0}c) = 1.
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Therefore Y = Y ′ a.s.

Existence. Recall Radon-Nikodym theorem:

Theorem(Radon-Nikodym). Suppose µ and ν are both σ-finite measure on (Ω,F), if ν � µ

(for any A ∈ F , µ(A) = 0 =⇒ ν(A) = 0), there exists a F-measurable function f : Ω → R

(called the density of ν over µ), s.t. for any A ∈ F ,

ν(A) =

∫
A

f dµ.

First suppose X ≥ 0. Define

ν(A) = E(X1A) =

∫
A

X dP, ∀A ∈ F .

Easy to verify ν : F → [0,∞) is a finite measure on F and ν � P. By R-N thm, we can find

a F-measurable function f , s.t.

ν(A) = E(f1A), ∀A ∈ F .

Now f is the conditional expectation of X given F . For general r.v. X, let X+ = max{X, 0},

X− = max{−X, 0}, then X+, X− ≥ 0 and X = X+ − X−. By previous result, there exist

f+, f− ∈ F s.t.

E(f+1A) = E(X+
1A), E(f−1A) = E(X−

1A), ∀A ∈ F .

Define f = f+ − f− ∈ F ,

E(f1A) = E(X1A) ∀A ∈ F .

Example 1.3. (1) If X = c is a constant, then E(c|F) = c, because the constant function

is measurable on any σ-field).
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(2) If F = F0, then

E(X|F) = X.

(3) If F = {∅,Ω}, then

E(X|F) = E(X).

(4) Let Ω1,Ω2, · · · be a partition of Ω with P(ωi) > 0, F = σ(Ωi; i ≥ 1). Then

E(X|F) =
∑
i

E(X1Ωi
)1Ωi

P(Ωi)

1.2 Property of conditional expectation

Proposition 1.4. Let (Ω,F0,P) be a probability space, F ⊆ F0 is a sub-σ-field. Let X and

Y be r.v. with E(|X|) < 0 and E(|Y |) < 0.

(1) For any a, b ∈ R, E(aX + bY |F) = aE(X|F) + bE(Y |F).

(2) If X ≤ Y , then E(X|F) ≤ E(Y |F) a.s.

(3) If Xn ≥ 0 and Xn ↑ X, then

E(Xn|F) ↑ E(X|F).

(4) If σ(X) and F are independent, then E(X|F) = E(X).

(5) If X ∈ F , then E(X|F) = X.

Proof. (1) verify the definition: first, since linear combination of measurable function is also

measurable, aE(X|F) + bE(Y |F) ∈ F ; second, for any A ∈ F ,

E[(aE(X|F) + bE(Y |F))1A] = aE[E(X|F)1A] + bE[E(Y |F)1A]

= aE(X1A) + bE(Y 1A)

= E[(aX + bY )1A],
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thus E(aX + bY |F) = aE(X|F) + bE(Y |F).

(2) for any ε > 0, define A = {ω ∈ Ω : E(X|F)(ω) − E(Y |F)(ω) ≥ ε > 0}, then A ∈ F since

E(X|F) ∈ F and E(Y |F) ∈ F . By the definition and X ≤ Y , we have

E[E(X|F)1A] = E(X1A) ≤ E(Y 1A) = E[E(Y |F)1A],

then

0 ≥ E[(E(X|F)− E(Y |F))1A] ≥ εE(1A) = εP(A),

we conclude P(A) = 0 by ε > 0 and P(A) ≥ 0. In other word, P(E(X|F) ≤ E(Y |F)) = 1, i.e.

E(X|F) ≤ E(Y |F) a.s.

(3) By Xn ↑ and the result from (2), we have E(Xn|F) is also increasing. Moreover, Xn

is bounded, leading to E(Xn|F) is also bounded for all n. By the bounded convergence

theorem, the limit of E(Xn|F) exists, denoted as Z. For any A ∈ F , by the definition,

E[E(Xn|F)1A] = E(Xn1A).

By the monotone convergence theorem and E(Xn|F) ↑ Z, Xn ↑ X, we have

E(Z1A) = lim
n→∞

E(E(Xn|F)1A) = lim
n→∞

E(Xn1A) = E(X1A),

and Z ∈ F because E(Xn|F) ∈ F and the limit of measurable functions is also measurable.

Therefore, Z satisfies the definition of E(X|F), i.e. Z = E(X|F).

(4) First E(X) is a constant so it is measurable for any σ-field, of course for F . Second, for

any A ∈ F ,

E[E(X)1A] = E(X)E(1A) = E(X)P(A),

and by independence,

E(X1A) = E(X)E(1A) = E(X)P(A).
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(5) Obviously.

Proposition 1.5 (Jensen’s inequality). Let φ be a convex function on R, and X be a r.v.

with E(|X|) <∞ and E(|φ(X)|) <∞. Then

φ(E(X|F)) ≤ E(φ(X)|F).

Proof. The proof will be much easier if we use the following property of convex function:

Theorem. Any convex function can be written as the supremum of some affine functions.a

aSee https://proofwiki.org/wiki/Convex_Real_Function_is_Pointwise_Supremum_of_Affine_
Functions

Let S = {(a, b) ∈ Q×Q : ax+ b ≤ φ(x)}, from the above theorem, φ(x) = sup(a,b)∈S(ax+ b).

For a fixed (a, b) ∈ S,

aX + b ≤ φ(X),

by Proposition 1.4,

aE(X|F) + b ≤ E(φ(X)|F), a.s.

define

A(a,b) := {ω ∈ Ω : aE(X|F) + b > E(φ(X)|F)},

thus A(a,b) is a null set. Since the countable union of null sets is also a null set (Note: the

uncountable union of null sets can generate an un-null set, that is why we make S countable!),
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we have

P[ω ∈ Ω : sup
(a,b)∈S

(aE(X|F) + b)(ω) > E(φ(X)|F)(ω)]

= P[
⋃

(a,b)∈S

{ω ∈ Ω : aE(X|F)(ω) + b > E(φ(X)|F)(ω)}]

= P(
⋃

(a,b)∈S

A(a,b))

= 0

i.e.

φ(E(X|F)) = sup
(a,b)∈S

(aE(X|F) + b) ≤ E(φ(X)|F), a.s.

Proposition 1.6 (Contraction in Lp). For any p ≥ 1, we have

E(|X|p|F) ≥ |E(X|F)|p.

Proposition 1.7 (“Fine enough”). Let F ⊆ G be two sub-σ-fields, and E(X|G) ∈ F , then

E(X|F) = E(X|G).

Proof. Since E(X|G) ∈ F , for proving the equality, we only need to prove for any A ∈ F ,

E[E(X|G)1A] = E[X1A],

this is true from the definition of E(X|G), and above A ∈ F ⊆ G.

Proposition 1.8 (“The smaller σ-field wins”). Let F ⊆ G be two sub-σ-field, then

(1) E[E(X|F)|G] = E(X|F)

(2) E[E(X|G)|F ] = E(X|F)
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Proof. (1) First E(X|F) ∈ G because E(X|F) ∈ F and F ⊆ G. Second, for any A ∈ G,

E[E(X|F)1A] = E[E(X|F)1A].

(2)First E(X|F) ∈ F by definition. Second, for any A ∈ F ⊆ G, by the definition of E(X|G)

and E(X|F),

E[E(X|G)1A] = E[X1A] = E[E(X|F)1A].

Corollary 1.9 (Law of total expectation).

E[E(X|F)] = E(X)

Proof. take G = {∅,Ω}, obviously G ⊆ F , thus from Proposition 1.8,

E[E(X|F)] = E[E(X|F)|G] = E(X|G) = E(X).

Proposition 1.10 (“Taking out what is known”). Let X ∈ F , E(|Y |) < ∞, E(|XY |) < ∞,

then

E(XY |F) = XE(Y |F).

Proof. It is obvious that XE(Y |F) ∈ F , so we only need to prove (2) in the definition, i.e.

for any A ∈ F ,

E[XE(Y |F)1A] = E(XY 1A). (∗)

We can prove it by performing the 4-step procedure.

1. Indicator. Suppose X = 1E ∈ F with E ∈ F , then

E[1EE(Y |F)1A] = E[E(Y |F)1A∩E ] = E(Y 1A∩E) = E(1EY 1A),

thus (∗) holds.
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2. Simple function. Suppose X =
∑

i ai1Ei
with Ei ∈ F , then (∗) still holds by linearity.

3. Non-negative function. Suppose X,Y ≥ 0. We can construct a series of simple functions

Xn s.t. Xn ↑ X. Since Y ≥ 0,E(Y |F) ≥ 0, we have XnE(Y |F) ↑ XE(Y |F) and XnY ↑ XY ,

by the monotone convergence theorem,

E[XnE(Y |F)1A] → E[XE(Y |F)1A], E(XnY 1A) → E(XY 1A),

Hence E[XE(Y |F)1A] = E(XY 1A).

4. General case. Let X = X+ −X− and Y = Y + − Y −, then

E[XE(Y |F)1A]

= E[(X+ −X−)E(Y + − Y −|F)1A]

= E[X+E(Y +|F)1A] + E[X−E(Y −|F)1A]− E[X+E(Y −|F)1A]− E[X−E(Y +|F)1A]

= E(X+Y +
1A) + E(X−Y −

1A)− E(X−Y +
1A)− E(X+Y −

1A)

= E[(X+ −X−)(Y + − Y −)1A] = E(XY 1A).

Proposition 1.11 (Conditional Expectation as projections in L2). Let X be a r.v. with

E(X2) <∞, i.e. X ∈ L2(F0). And for any Y ∈ F with E(Y 2) <∞, i.e. Y ∈ L2(F), we have

E[(X − Y )2] ≥ E[(X − E(X|F))2],

the equality holds if and only if Y = E(X|F).

Proof. 1. First we have E(|XY |) ≤
√

E(X2)E(Y 2) <∞, then by Proposition 1.10,

Y E(X|F) = E(Y X|F).
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Taking the expectation, we have

E[Y E(X|F)] = E[E(Y X|F)] = E(Y X),

i.e.

E[Y (X − E(X|F))] = 0, ∀Y ∈ L2(F)

this means any Y ∈ L2(F) is perpendicular to X − E(X|F).

2. By the Jensen’s inequality (Proposition 1.5), [E(X|F)]2 ≤ E(X2|F), thus

E[[E(X|F)]2] ≤ E[E(X2|F)] = E(X2) <∞,

i.e. E(X|F) ∈ L2(F).

3. Let Z = E(X|F)− Y ∈ L2(F) (since both Y and E(X|F) are in the L2(F)), we have

E[(X − Y )2] = E[(X − E(X|F) + Z)2]

= E[(X − E(X|F))2] + E(Z2) + 2E[Z(X − E(X|F))]

= E[(X − E(X|F))2] + E(Z2)

≥ E[(X − E(X|F))2]

The equality holds if and only if Z = 0 i.e. Y = E(X|F).
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2 Martingale

2.1 Definition of martingale

Definition 2.1. Suppose {Fn : n ≥ 0} is a sequence of σ-fields on Ω, {Xn : n ≥ 0} is a

sequence of r.v. on Ω.

• We call {Fn} a filtration if

F0 ⊆ F1 ⊆ F2 · · ·

• We say {Xn} is adapted to {Fn} if Xn is Fn-measurable (Xn ∈ Fn) for all n ≥ 0.

• We call {Xn} a martingale w.r.t. {Fn} if

(1) E(|Xn|) <∞

(2) {Xn} is adapted to {Fn}

(3) E(Xn+1|Fn) = Xn for all n ≥ 0.

{Xn} is called a submartingale if the equality in (3) is replaced by ≥, or a supermartin-

gale if replaced by ≤.

Proposition 2.2 (easy property). Suppose {Xn} is a martingale w.r.t. {Fn}, then

(1) for any a ∈ R, {Xn + a} is also a martingale.

(2) for any n ≥ 0, E(Xn+1 −Xn|Fn) = 0.

(3) for any n ≥ 1, E(X0) = E(Xn).

The original meaning of the martingale is a set of strings on the horse neck to control its

head up or down.

Example 2.3. Let {Xn : n ≥ 1} be i.i.d. r.v. Sn = S0+X1+ · · ·+Xn, where S0 is a constant.

F0 = {∅,Ω} and Fn = σ(X1, X2, · · · , Xn).
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Figure 1: Martingale (the purple string)

(1) If E(Xi) = 0 for any i ≥ 1,then {Sn, n ≥ 0} is a martingale.

Obviously E(Sn) = S0 <∞ and Sn ∈ Fn. For the third requirement,

E(Sn+1|Fn) = E(Sn +Xn+1|Fn) = E(Sn|Fn) + E(Xn+1|Fn) = Sn + E(Xn+1) = Sn,

where we used the fact that Sn ∈ Fn and σ(Xn+1) is independent of Fn.

(2) If E(Xi) = 0 and σ2 = E(X2
i ) <∞ for any i ≥ 1, then {S2

n−nσ2 : n ≥ 0} is a martingale.

First we have E(S2
n−nσ2) = E(S2

n)−nσ2 = nE(X2
i )+S

2
0−nσ2 = S2

0 <∞ and S2
n−nσ ∈ Fn.
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Moreover,

E[S2
n+1 − (n+ 1)σ2|Fn] = E[S2

n+1|Fn]− (n+ 1)σ2

= E[(Sn +Xn+1)
2|Fn]− (n+ 1)σ2

= E[S2
n + 2SnXn+1 +X2

n+1|Fn]− (n+ 1)σ2

= E(S2
n|Fn) + 2E(SnXn+1|Fn) + E(X2

n+1|Fn)− (n+ 1)σ2

= S2
n + 2SnE(Xn+1|Fn) + E(X2

n+1)− (n+ 1)σ2

= S2
n + 2SnE(Xn+1) + E(X2

n+1)− (n+ 1)σ2

= S2
n − nσ2.

Example 2.4. Let X ∈ L1(F), define

Mn = E(X|Fn),

then {Mn} is a martingale.

Proof. Obviously Mn ∈ L1(Fn), and

E(Mn+1|Fn) = E[E(X|Fn+1)|Fn] = E(X|Fn) =Mn.

Proposition 2.5. (1) Suppose {Xn : n ≥ 0} is a supermartingale w.r.t. {Fn}, then for any

n > m,

E(Xn|Fm) ≤ Xm.

(2) Suppose {Xn : n ≥ 0} is a submartingale w.r.t. {Fn}, then for any n > m,

E(Xn|Fm) ≥ Xm.
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(3) Suppose {Xn : n ≥ 0} is a martingale w.r.t. {Fn}, then for any n > m,

E(Xn|Fm) = Xm.

Proof. (1) Fix m ≥ 0, by definition, E(Xm+1|Fm) ≤ Xm. Now suppose E(Xm+k|Fm) ≤ Xm

for some k ≥ 1. Then for k + 1 we have

E(Xm+k+1|Fm) = E[E(Xm+k+1|Fm+k)|Fm] ≤ E[Xm+k|Fm] ≤ Xm,

the first “=” is due to “The smaller wins”, the following “≤” is by the definition and induction

hypothesis. Hence by induction, E(Xn|Fm) ≤ Xm for all n > m.

(2) Notice that {−Xn} is supermartingale.

(3) Using the fact that martingale is both supermartingale and submartingale.

Proposition 2.6. (1) Suppose {Xn} is a martingale w.r.t. Fn, φ : R → R is a convex

function with E(|φ(Xn)|) < ∞ for all n ≥ 0. Then {φ(Xn)} is a submartingale w.r.t.

Fn.

(2) Suppose {Xn} is a submartingale w.r.t. Fn, φ : R → R is an increasing convex function

with E(|φ(Xn)|) <∞ for all n ≥ 0. Then {φ(Xn)} is a submartingale w.r.t. Fn.

(3) If {Xn} is a submartingale, a ∈ R, then {(Xn − a)+} is a submartingale.

(4) If {Xn} is a supermartingale, a ∈ R, then {Xn ∧ a} is a supermartingale.

Proof. (1)First, since φ is convex, then it is measurable, thus φ ◦ Xn ∈ Fn. Second, by

Jensen’s inequality,

E[φ(Xn+1)|Fn] ≥ φ(E(Xn+1|Fn)) = φ(Xn).
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(2)Submartingale means E(Xn+1|F) ≥ Xn. Since φ is increasing, we have

E[φ(Xn+1)|Fn] ≥ φ(E(Xn+1|Fn)) ≥ φ(Xn).

(3)Because φ(x) = (x− a)+ = max {0, x− a} is increasing and convex (See Figure 2).

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

1

2

3

4

5

6

7

8

(x
)

(x) = (x a) +

a=2

Figure 2: Plot of φ(x) = (x− a)+

(4) Since

Xn ∧ a = min{Xn, a} = min{Xn − a, 0}+ a = −max{−Xn + a, 0}+ a = −(−Xn + a)+ + a,

where {−Xn} is a submartingale. Then apply (3), (−Xn + a)+ is a submartingale, thus

−(−Xn + a)+ + a is a supermartingale.

2.2 Martingale convergence theorem

We will prove the Martingale convergence theorem in this section.

Definition 2.7. Let {Fn : n ≥ 0} be a filtration, r.v. the sequence {Hn : n ≥ 1} is said to

be predictable if Hn ∈ Fn−1 for all n ≥ 1.

Consider a model of the stock market. Let Xn (n ≥ 0) be the value of one stock at time

17
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n, and Hn be the total number of shares we hold between time n− 1 and time n.1 Then our

total profit2 from the stock market at time n (n ≥ 1) is

(H ·X)n =

n∑
m=1

Hm(Xm −Xm−1),

and define (H ·X)0 = 0.

Example 2.8. Let {Xn = X0+ ξ1+ · · ·+ ξn : n ≥ 0} be a random walk starting from X0 = 3

with P(ξi = 1) = P(ξi = −1) = 0.5. Let H0 = 0, for n ≥ 1, define Hn as

Hn =


Hn−1 + 1, Xn ≥ 3

(Hn−1 − 1)+. Xn < 3

Figure 3 shows the simulation of this model.

Proposition 2.9 (“No profit for unfair game on average”). Suppose {Xn : n ≥ 0} is a

supermartingale, {Hn : n ≥ 1} is a predictable sequence with 0 ≤ Hn <∞. Then (H ·X)n is

a supermartingale.

(This conclusion remains true if we replace all “supermartingale” with “submartingale”

or “martingale”.)

Proof. For n ≥ 0,

E((H ·X)n+1|Fn) = E[(H ·X)n +Hn+1(Xn+1 −Xn)|Fn]

= (H ·X)n +Hn+1E(Xn+1 −Xn|Fn)

≤ (H ·X)n,

1We will buy or sell shares depending on the stock value at time n − 1, then hold them until we know the
updated value at time n, i.e. the update of H is always after the update of X, that is why Hn ∈ Fn−1.

2To simplify the model, suppose we can get the shares without paying. So the profit is only affected by the
fluctuation of the stock value and number of shares we hold.
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Figure 3: Simulation of the stock value, shares and profit

the last “≤” holds because Hn+1 ≥ 0 and E(Xn+1 −Xn|Fn) ≤ 0 for supermartingale.

Remark.We immediately have E[(H ·X)n] ≤ E[(H ·X)0] = 0 by the property of supermartin-

gale, which means there is no profit on average for the supermartingale (unfair game).

Definition 2.10. We call r.v. N a stopping time, if for any n ≥ 0,

{N = n} ∈ Fn.

Proposition 2.11. Suppose N is a stopping time, then for any m ≥ 0,

(1) {N < m+ 1} = {N ≤ m} ∈ Fm

(2) {N > m} = {N ≥ m+ 1} ∈ Fm
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Proposition 2.12. Suppose N is a stopping time, {Xn} is a supermartingale, then {XN∧n}

is a supermartingale.

Proof. 1.For any n ≥ 1, define Hn(ω) = 1{N(ω)≥n}(ω), then {Hn} is predictable.

We only need to show Hn ∈ Fn−1. This is true because

{Hn = 1} = {N ≥ n} ∈ Fn−1.

2. Show (H ·X)n = XN∧n −X0.

(H ·X)n =

n∑
m=1

Hm(Xm −Xm−1)

=

n∑
m=1

1{N≥m}(Xm −Xm−1)

=

N∧n∑
m=1

(Xm −Xm−1)

= XN∧n −X0.

3. Finally, applying Proposition 2.9, we have XN∧n = (H ·X)n+X0 is a supermartingale.

Next, we will prove the Martingale convergence theorem by constructing the “Crossing”

model. Suppose {Xn : n ≥ 0} is a submartingale, and a, b ∈ R with a < b. Define

N1 = inf{m : m ≥ 0, Xm ≤ a}, N2 = inf{m : m > N1, Xm ≥ b}, and for k ≥ 2,

N2k−1 = inf{m : m > N2k−2, Xm ≤ a}, N2k = inf{m : m > N2k−1, Xm ≥ b},

in other word, N2k−1 is the the first time after N2k−2 that Xm ≤ a happens, N2k is the

the first time after N2k−1 that Xm ≥ b happens. During the time between N2k−1 and N2k,

Xm is upcrossing the interval [a, b]. Define Un = sup{k : N2k ≤ n} is the total number of

upcrossings by time n (See Figure 4).
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Figure 4: Example of upcrossings. In this case there are two upcrossings by time 100, i.e.
U100 = 2.

Lemma 2.13 (Upcrossing inequality). Suppose {Xm : m ≥ 0} is a submartingale, then

E(Un) ≤
E[(Xn − a)+]− E[(X0 − a)+]

b− a
.

Proof. 1. Nj are stopping time.

For n ≥ 0,

{N1 = n} = {Xn ≤ a} ∈ Fn,

{N2 = n} = {n > N1, Xn ≥ b} = {N1 ≤ n− 1} ∩ {Xn ≥ b} ∈ Fn,

then this claim is proved by induction.

2. For m ≥ 1, define

Hm =


1 N2k−1 < m ≤ N2k

0 otherwise

then Hm is predictable3.
3Actually, Hm is the strategy how we hold the shares: if the stock value is upcrossing the interval [a, b], we

always keep one (we only consider one or zero share for simplicity) share, otherwise, we sell all of them.
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We need to show Hm ∈ Fm−1. Notice

{Hm = 1} =

∞⋃
k=1

{N2k−1 < m ≤ N2k} =

∞⋃
k=1

{N2k−1 < m} ∩ {N2k ≥ m} ∈ Fm−1

3.Define Ym = Xm ∨ a = a+ (Xm − a)+, then by Proposition 2.6, Ym is a submartingale.

4.Claim: for all n ≥ 1, (b− a)Un ≤ (H · Y )n.

For k ≥ 1 and N2k <∞,

(H · Y )N2k
=

k∑
i=1

N2i∑
j=N2i−1+1

(Yj − Yj−1) =

k∑
i=1

(YN2i
− YN2i−1

) ≥ k(b− a).

If n ∈ {N2k, · · · , N2k+1} (during the end of the k’th upcrossing to the beginning of the next

upcrossing),

(H · Y )n = (H · Y )N2k
≥ k(b− a);

If n ∈ {N2k−1 + 1, · · · , N2k} (in the middle of the incomplete k’th upcrossing),

(H · Y )n = (H · Y )N2k−1
+

n∑
m=N2k−1+1

(Ym − Ym−1)

= (H · Y )N2k−1
+ Yn − YN2k−1

≥ (H · Y )N2k−1
Since YN2k−1

= a, and Yn ≥ a

= (H · Y )N2k−2

≥ (k − 1)(b− a)

Above we have iterated all cases, hence (H · Y )n ≥ Un(b− a) for all n ≥ 1.

5. Define Km = 1−Hm, then Km is predictable, and Ym is a submartingale by claim 3, thus

22



Notes Huarui Zhou Probability

both (H · Y )n and (K · Y )n are submartingales by Proposition 2.9. Then

Yn − Y0 =

n∑
i=1

(Yi − Yi−1) =

n∑
i=1

(Yi − Yi−1)1i:upcrossing +
n∑

i=1

(Yi − Yi−1)1i:non-upcrossing

= (H · Y )n + (K · Y )n.

Therefore,

E[(Xn−a)+]−E[(X0−a)+] = E(Yn−Y0) = E[(H ·Y )n]+E[(K ·Y )n] ≥ E[(H ·Y )n] = (b−a)E(Un),

where E[(K · Y )n] = E[E[(K · Y )n|Fn]] ≥ E[(K · Y )0] = 0.

Theorem 2.14 (Martingale convergence theorem). Suppose {Xn : n ≥ 0} is a submartingale

with supE(X+
n ) <∞, then there exists a r.v. X with E(|X|) <∞ s.t. Xn → X a.s.

Proof. 1. {Un} is increasing.

{k : N2k ≤ n} ⊆ {k : N2k ≤ n+ 1}, and

Un = sup{k : N2k ≤ n} ≤ sup{k : N2k ≤ n+ 1} = Un+1.

Let Un ↑ U .

2. E(Un) is uniformly bounded.

By Lemma 2.13, and (Xn − a)+ ≤ X+
n + |a|, E[(X0 − a)+] ≥ 0, we have

E(Un) ≤
E[(Xn − a)+]− E[(X0 − a)+]

b− a
≤ E(X+

n ) + |a|
b− a

≤ M + |a|
b− a

<∞,

where M = sup{E(X+
n ) : n ≥ 0}.

3. By monotone convergence theorem,

E(U) = lim
n→∞

E(Un) ≤
M + |a|
b− a

<∞,
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then U <∞ a.s.

4.limn→∞Xn exists (finite or infinite) a.s.

Rewrite U as U[a,b] for any a < b. Notice

{ω : U[a,b](ω) = ∞} = {lim infXn < a < b < lim supXn}4

then

P(limXn does not exist)

= P(lim infXn < lim supXn)

= P(
⋃

a,b∈Q
{lim infXn < a < b < lim supXn})

= P(
⋃

a,b∈Q
{U[a,b] = ∞})

= 0,

therefore P(limXn exists) = 1. Denote X = limn→∞Xn except the above null set, and X = 0

on the above null set, then Xn → X a.s.

5.E(|X|) <∞.

Notice that |Xn| = X+
n +X−

n = 2X+
n −Xn, then

E(|Xn|) = 2E(X+
n )− E(Xn) ≤ 2E(X+

n )− E(X0) ≤ 2M + E(|X0|) <∞,

where E(Xn) ≥ E(X0) by the property of submartingale. By Fatou’s Lemma,

E(|X|) = E(lim inf |Xn|) ≤ lim infE(|Xn|) ≤ 2M + E(|X0|) <∞.

Corollary 2.15. If {Xn : n ≥ 0} is a supermartingale, Xn ≥ 0, then there exists a r.v. with
4To make U (total number of upcrossings) infinite, Xn must be always oscillating to cross [a,b], i.e. its limit

cannot exist.
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E(X) ≤ E(X0) s.t. Xn → X a.s.

Proof. {Yn = −Xn : n ≥ 0} is a submartingale, and sup(Y +
n ) = 0 < ∞, so by Theorem 2.14,

there exists a r.v. Y with E(|Y |) < ∞ s.t. Yn → Y a.s. Let X = −Y , then Xn → X a.s. By

Fatou’s lemma,

E(X) = E(lim infXn) ≤ lim infE(Xn) ≤ E(X0),

because E(Xn) ≤ E(X0) for all n by the definition of supermartingale.

Application: Borel-Cantelli lemma for conditional probability

Lemma 2.16. Suppose {Xn : n ≥ 0} is a martingale with |Xn+1 − Xn| ≤ M < ∞ for all

n ≥ 0. Let

C = { lim
n→∞

Xn <∞}, D = {lim supXn = +∞ and lim infXn = −∞}.

Then P(C ∪D) = 1.

Theorem 2.17 (Doob’s decomposition). Any submartingale {Xn : n ≥ 0} can be written in

a unique way as Xn =Mn+An, where Mn is a martingale and An is a predictable increasing

sequence with A0 = 0.

Proof. 1. Define A0 = 0. For n ≥ 1, An =
∑n

m=1[E(Xm|Fm−1) − Xm−1] ∈ Fn−1, so An is

predictable.

2. An − An−1 = E(Xn|Fn−1)−Xn−1 ≥ 0, so An is increasing.

3.Let Mn = Xn − An.

E(Mn|Fn−1) = E(Xn − An|Fn−1) = E(Xn|Fn−1)− An = (An − An−1 +Xn−1)− An =Mn−1,

thus Mn is a martingale.
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4. Suppose there is another pair M ′
n and A′

n, s.t. Xn =M ′
n + A′

n, then for n ≥ 1, let

Yn =Mn −M ′
n = A′

n − An,

so Yn is a martingale and Yn ∈ Fn−1. By Yn is a martingale,

E(Yn|Fn−1) = Yn−1, a.s.

By Yn ∈ Fn−1,

E(Yn|Fn−1) = Yn, a.s.

thus Yn = Yn−1 a.s. And Y0 = A′
0 − A0 = 0 by definition, we have Yn = 0 a.s. for all n ≥ 0,

i.e. Mn =M ′
n and An = A′

n a.s.

Theorem 2.18 (Borel-Cantelli lemma for conditional probability). Let{Fn : n ≥ 0} be a

filtration with F0 = {∅,Ω}, and {Bn : n ≥ 1} be a sequence of events with Bn ∈ Fn−1, then

{Bn i.o.} = {
∞∑
n=1

P(Bn|Fn−1) = ∞}.

2.3 Doob’s inequality

Lemma 2.19. If X = Y a.s., then E(X) = E(Y ).

Proof. Denote A = {ω : X(ω) = Y (ω)},

E(X − Y ) = E[(XY )1A] + E[(XY )1Ac ] = E[(XY )1A] = 0,

where E[(XY )1Ac ] = 0 because the integral over a null set is zero.

Lemma 2.20. Let {Xn : n ≥ 0} be a submartingale, and N is a stopping time with

P(N ≤ k) = 1

26



Notes Huarui Zhou Probability

for some k ∈ N5, then

E(X0) ≤ E(XN ) ≤ E(Xk).

Proof. 1.By Proposition 2.12, XN∧n is a submartingale. And XN∧k = XN a.s., then by the

property of submartingale and Lemma 2.19,

E(X0) = E(XN∧0) ≤ E(XN∧k) = E(XN ).

2. Define Kn = 1{N<n} = 1{N≤n−1}, then Kn ∈ Fn−1 thus predictable. By Proposition 2.9,

(K ·X)n is also a submartingale, and

(K ·X)n =

n∑
m=1

Km(Xm −Xm−1)

=

n∑
m=1

1{N≤m−1}(Xm −Xm−1)

=


n∑

m=N+1

(Xm −Xm−1) = Xn −XN , N ≤ n− 1

0 N ≥ n

= Xn −XN∧n.

Taking n = k, we have (for ω ∈ {N ≤ k})

(K ·X)k = Xk −XN∧k = Xk −XN , a.s.

then by the property of submartingale and Lemma 2.19,

0 = E[(K ·X)0] ≤ E[(K ·X)k] = E(Xk −XN ) = E(Xk)− E(XN ).

5N ≤ k for some k a.s. or N bounded a.s. is not the same as N < ∞ a.s. For example, suppose X has the
normal distribution, then X < ∞ a.s. but X is not bounded a.s.
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Theorem 2.21 (Doob’s maximal inequality). Let {Xm : m ≥ 0} be a submartingale, for any

λ > 0, denote

X̄n = max
0≤m≤n

X+
m, A = {X̄n ≥ λ},

then

λP(A) ≤ E(Xn1A) ≤ E(X+
n ).

Proof. Let N = inf{m : Xm ≥ λ} ∧ n, then XN ≥ λ on A, thus

λP(A) = E(λ1A) ≤ E(XN1A).

Since N ≤ n on Ω, then by Lemma 2.20, E(XN ) ≤ E(Xn). On Ac = {X̄n < λ}, XN = Xn,

i.e. E(XN1Ac) = E(Xn1Ac), thus

E(XN1A) = E(XN )− E(XN1Ac) ≤ E(Xn)− E(Xn1Ac) = E(Xn1A) ≤ E(X+
n 1A) ≤ E(X+

n ).

Below is an application of Doob’s maximal inequality.

Theorem 2.22 (Kolmogorov’s inequality). Suppose {Xn : n ≥ 1} are independent with

E(Xn) = 0 and E(X2
n) <∞. Let Sn =

∑n
k=1Xk, then for any a > 0,

P
(

max
1≤m≤n

|Sm| ≥ a

)
≤ Var(Sn)

a2
.

Proof. Sn is a martingale because

E(Sn+1|Fn) = E(Sn|Fn) + E(Xn+1|Fn) = Sn + E(Xn+1) = 0.

Then S2
n is a submartingale by Proposition 2.6. Applying Theorem 2.21 to S2

n, and take

28



Notes Huarui Zhou Probability

λ = a2, we have

a2P
(

max
1≤m≤n

S2
m ≥ a2

)
≤ E(S2

n) = Var(Sn).

Notice that {max1≤m≤n S
2
m ≥ a2} = {max1≤m≤n |Sm| ≥ a}, which gives the desire result.

Lemma 2.23. If X is a r.v. with X ≥ 0, then for any p ∈ (1,+∞),

∫ +∞

0

ptp−1P(X ≥ t)dt = E(Xp).

Proof.

∫ +∞

0

ptp−1P(X ≥ t)dt =
∫ +∞

0

ptp−1

[∫
Ω

1{X≥t} dP
]

dt

=

∫
Ω

[∫ +∞

0

ptp−1
1{X≥t} dt

]
dP

=

∫
Ω

[∫ X

0

ptp−1 dt
]

dP

=

∫
Ω

Xp dP = E(Xp)

Theorem 2.24 (Doob’s Lp maximal inequality). If Xn is a submartingale, then for any

p ∈ (1,+∞),

E(X̄p
n) ≤

(
p

p− 1

)p

[E(X+
n )p].

Morever, if Yn is a martingale or a positive submartingale, and

Y ∗
n = max

0≤m≤n
|Ym|,

then for any p ∈ (1,+∞),

E(|Y ∗
n |p) ≤

(
p

p− 1

)p

E(|Yn|p).
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Proof. Take M > 0, we will work with X̄n ∧M first.

1. For any t ≥ 0, if M ≥ t, then

{ω : X̄n(ω) ∧M ≥ t} = {ω : X̄n(ω) ≥ t};

if M < t, then

{ω : X̄n(ω) ∧M ≥ t} = ∅.

2. By Lemma 2.23, Theorem 2.21 and Fubini’s theorem,

E[(X̄n ∧M)p] =

∫ +∞

0

ptp−1P(X̄n ∧M ≥ t)dt

=

∫ M

0

ptp−1P(X̄n ≥ t)dt

≤
∫ M

0

ptp−2E(X+
n 1{X̄n≥t})dt

=

∫ M

0

ptp−2E(X+
n 1{X̄n∧M≥t})dt

= pE

[
X+

n

∫ X̄n∧M

0

tp−2 dt
]

=
p

p− 1
E[X+

n (X̄n ∧M)p−1]

≤ p

p− 1
[E(|X+

n |p)]1/p[E(|X̄n ∧M |p)]1/q. q = p/(p− 1)

Thus (
E[|X̄n ∧M |p]

)1/p ≤ p

p− 1
[E(|X+

n |p)]1/p,

or

E[|X̄n ∧M |p] ≤
(

p

p− 1

)p

E(|X+
n |p),
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let M → +∞, then we have

E(X̄p
n) ≤

(
p

p− 1

)p

[E(X+
n )p].

3. Let Xn = |Yn|, then Xn is a submartingale. Notice X+
n = Xn = |Yn|, and

Y ∗
n = max

0≤m≤n
|Ym| = max

0≤m≤n
|Ym|+ = X̄n.

Theorem 2.25 (Lp convergence theorem). If Xn is a martingale or a positive submartingale

with supn E(|Xn|p) <∞, p ∈ (1,∞), then Xn → X a.s. and in Lp.

Proof. 1. By the property of martingale and positive submartingale,

E(|Xn+1|p|Fn) ≥ |E(Xn+1|Fn)|p ≥ |Xn|p,

so |Xn|p is a submartingale. By the martingale convergence theorem, |Xn|p → |X∞|p a.s.,

then Xn → X∞ a.s.

2. By Theorem 2.24,

E
[
( sup
0≤m≤n

|Xm|)p
]
≤
(

p

p− 1

)p

E(|Xn|p).

3. Since (sup0≤m≤n |Xm|)p ↑ (supn≥0 |Xn|)p, by monotone convergence theorem,

E
[
(sup
n≥0

|Xn|)p
]
= lim

n→∞
E
[
( sup
0≤m≤n

|Xm|)p
]
= sup

n
E
[
( sup
0≤m≤n

|Xm|)p
]
≤
(

p

p− 1

)p

sup
n

E(|Xn|p) <∞,

thus supn≥0 |Xn| ∈ Lp.

4. Since |X∞| = lim supn |Xn| ≤ supn |Xn| a.s., we have |Xn −X∞| ≤ (2 supn |Xn|) a.s., then

by dominated convergence theorem, we have

lim
n→∞

E[|Xn −X∞|p] = 0.
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Lemma 2.26 (Orthogonality of martingale increments). Let Xn be a martingale with E(X2
n) <

∞ for all n. For m ≤ n and r.v. Y ∈ Fm with E(Y 2) <∞, we have

E[(Xn −Xm)Y ] = 0.

Hence for l < m < n,

E[(Xn −Xm)(Xm −Xl)] = 0.

Proof. 1. Cauchy-Schwarz: E[(Xn − Xm)Y ] ≤ E(|XnY |) + E(|XmY |) ≤
√
E(X2

n)E(Y 2) +√
E(X2

m)E(Y 2) <∞.

2.E[(Xn −Xm)Y ] = E[E[(Xn −Xm)Y |Fm]] = E[Y E[(Xn −Xm)|Fm]] = 0.

Lemma 2.27. If Xn is a martingale with E(X2
n) <∞ for all n, m ≤ n, then

E[(Xn −Xm)2|Fm] = E(X2
n|Fm)−X2

m.

Proof. E[(Xn −Xm)2|Fm] = E[X2
n − 2XmXn +X2

m|Fm] = E(X2
n|Fm)− 2XmE(Xn|Fm) +X2

m,

conclude by E(Xn|Fm) = Xm.
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2.4 Uniform integrability and convergence in L1

2.4.1 Definition and examples

Definition 2.28. Let (Ω,F ,P) be a probability space, {Xi : i ∈ I} be a collection of random

variables on (Ω,F ,P), we call they are uniformly integrable (UI) if

lim
M→∞

(
sup
i∈I

E(|Xi|1{|Xi|>M})

)
= 0

Proposition 2.29. {Xi : i ∈ I} are UI if and only if

(1) L1 bounded: supi∈I E(|Xi|) <∞

(2) uniform absolutely continuous: for any ε > 0, there exists δ > 0 s.t. for any A ∈ F with

P(A) < δ, we have

sup
i∈I

E(|Xi|1A) < ε.

Proof. =⇒: Suppose {Xi : i ∈ I} is UI. We can find M > 0, s.t.

sup
i∈I

E(|Xi|1{|Xi|>M}) < 1.

then for any i ∈ I

E(|Xi|) = E(|Xi|1{|Xi|≤M}) + E(|Xi|1{|Xi|>M}) ≤M + E(|Xi|1{|Xi|>M}) < M + 1,

thus supi∈I E(|Xi|) < M +1 <∞. (1) is proved. Then we will prove (2). Take ε > 0, we can

find M > 0, s.t.

sup
i∈I

E(|Xi|1{|Xi|>M}) <
ε

2
,
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then take δ = ε

2M
, for any A with P(A) < δ, we have

sup
i∈I

E(|Xi|1A) = sup
i∈I

E(|Xi|1A1{|Xi|≤M}) + sup
i∈I

E(|Xi|1A1{|Xi|>M})

≤ sup
i∈I

E(M1A1{|Xi|≤M}) + sup
i∈I

E(|Xi|1A1{|Xi|>M})

< MP(A) + ε

2

< M · ε

2M
+
ε

2
= ε.

⇐=: Suppose (1) and (2) hold. Take C > 0 to satisfy supi∈I E(|Xi|) < C < ∞. For any

ε > 0, take δ from (2). Let N =
δ

C
, then

P(|Xi| > M) ≤ E(|Xi|)
M

< δ, ∀i ∈ I,

by (2),

sup
i∈I

E(|Xi|1{|Xi|>M}) < ε,

from the ε− δ definition, we have supi∈I E(|Xi|1{|Xi|>M}) → 0 as N → ∞.

Lemma 2.30. If X ∈ L1, then

1. for any ε > 0, there exists δ > 0 s.t. A ∈ F with P(A) < δ implies E(|X|1A) < ε.

2.

lim
M→∞

E(|X|1{|X|>M}) = 0.

Example 2.31. Let 0 < C <∞ be a constant, then {Xn} with |Xn| ≤ C are UI.

Proof. Take M = C, then E(|Xn|1{Xn>M}) = 0 for all n.

Example 2.32. Suppose {X1, X2, · · · , Xn} are all in L1, then they are also UI.
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Proof. First they are L1 bounded. Second, for any ε > 0, by Lemma 2.30, we can find δi > 0,

s.t. P(A) < δi implies

E(|Xi|1A) < ε.

Thus take δ = min{δ1, · · · , δn}, we have P(A) < δ implies

E(|Xi|1A) < ε, ∀i ∈ {1, · · ·n},

s.t. supi E(|Xi|1A) < ε. By Proposition 2.29, {Xi} is UI.

Example 2.33. Let U be a r.v. with uniform distribution on [0, 1], define

Xn = n1{U≤ 1
n
},

then E(|Xn|) = 1 for all n, thus they are L1 bounded, but for any M > 0,

E(|Xn|1{|Xn|>M}) = 1, ∀n ≥ [M ] + 1,

thus they are not UI.

Example 2.34. Let X be integrable r.v., then {Yn} with |Yn| ≤ |X| are UI.

Proof. Since {|Yn| > M} ⊆ {|X| > M}, as M → ∞,

sup
n

E(|Yn|1{|Yn|>M}) ≤ E(|X|1{|X|>M}) → 0.

Example 2.35. Let {Xn} be UI, then {Yn} with |Yn| ≤ |Xn| are also UI.

Proof. Since {|Yn| > M} ⊆ {|Xn| > M}, 1{|Yn|>M} ≤ 1{|Xn|>M}, then as M → ∞,

sup
n

E(|Yn|1{|Yn|>M}) ≤ sup
n

E(|Xn|1{|Xn|>M}) → 0.
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Example 2.36. Let {Xn} and {Yn} both be UI, then {Xn + Yn} are also UI.

Proof. As M → ∞,

sup
n

E(|Xn + Yn|1{|Xn+Yn|>M}) ≤ sup
n

E((|Xn|+ |Yn|)1{|Xn|+|Yn|>M})

= sup
n

E(|Xn|1{|Xn|+|Yn|>M}) + sup
n

E(|Yn|1{|Xn|+|Yn|>M})

≤ sup
n

E(|Xn|1{|Xn|+supn |Yn|>M}) + sup
n

E(|Yn|1{|Yn|+supn |Xn|>M})

= sup
n

E(|Xn|1{|Xn|>M−A}) + sup
n

E(|Yn|1{|Yn|>M−B}) → 0,

here we let A = supn |Yn| <∞, B = supn |Xn| <∞.

Example 2.37. Let Fn ⊆ F be sub-σ-fields, X ∈ L1, then {E(X|Fn) : n ≥ 0} is UI.

Proof. Let Yn = E(X|Fn) ∈ Fn. For any ε > 0, our goal is to find M > 0, s.t.

E[|Yn|1{|Yn|>M}] < ε, ∀n.

By Lemma 2.30, since X ∈ L1, there exists δ > 0, s.t. P(A) < δ implies E(|X|1A) < ε. By

Jensen’s inequality, |Yn| ≤ E(|X||Fn), then

E[|Yn|1{|Yn|>M}] ≤ E[E(|X||Fn)1{|Yn|>M}]

≤ E[E(|X||Fn)1{E(|X||Fn)>M}]

= E[|X|1{E(|X||Fn)>M}] (definition of E(|X||Fn))

where

P(E(|X||Fn) > M) ≤ E[E(|X||Fn)]

M
=

E(|X|)
M

< δ,

if we take M = [E(|X|)/δ] + 1. Thus

E[|Yn|1{|Yn|>M}] ≤ E[|X|1{E(|X||Fn)>M}] < ε ∀n.
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Remark. {Fn : n ≥ 0} does not need to be increasing or decreasing.

Proposition 2.38. {Xn : n ∈ I} are UI if and only if there exists a measurable function

φ : [0,∞) → [0,∞) s.t.

lim
x→∞

φ(x)

x
= +∞,

and

sup
n∈I

E[φ(|Xn|)] <∞.

Proof. ⇐=: First there exists M ∈ [0,∞) s.t. for all i,

E[φ(|Xn|)] ≤M.

Then by limx→∞
φ(x)
x = +∞, for any k ∈ Z+, there exists Ck > 0, s.t.

φ(x) > kMx, ∀x > Ck.

Therefore, for any n ∈ I,

M ≥ E[φ(|Xn|)] ≥ E[φ(|Xn|)1{|Xn|>Ck}] ≥ kME[|Xn|1|Xn|>Ck}],

then we have

sup
n∈I

E[|Xn|1|Xn|>Ck}] ≤
1

k
.

For any ε > 0, just choose k = [1/ε] + 1, take N = Ck > 0, we have

sup
n∈I

E[|Xn|1|Xn|>N}] = sup
n∈I

E[|Xn|1|Xn|>Ck}] ≤
1

k
< ε.

=⇒: Omitted.

Corollary 2.39. For p ∈ (1,∞), let {Xn : n ∈ I} with supn∈I |Xn|p <∞, then they are UI.
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Proof. φ(x) = xp satisfies

lim
x→∞

φ(x)

x
= lim

x→∞
xp−1 = +∞,

and supn∈I φ(|Xn|) <∞, thus it is proved by Proposition 2.38.

2.4.2 UI and convergence

Lemma 2.40. If Xn → X in probability, then there exists a subsequence {Xnk : k ≥ 0} s.t.

Xnk → X a.s.

as k → ∞.

Lemma 2.41. Suppose Xn ≥ 0 and Xn → X in probability, then

E(X) ≤ lim inf
n→∞

E(Xn).

Lemma 2.42 (Bounded convergence theorem). Suppose Xn ≤ K < ∞ for all n ≥ 0, and

Xn → X in probability, then Xn → X in L1.

Proof. Since |X| = |X − Xn + Xn| ≤ |X − Xn| + |Xn| ≤ |X − Xn| +K, then |X| −K ≥ 1

m

implies |X −Xn| ≥
1

m
, i.e.

P(|X| ≥ K +
1

m
) ≤ P(|Xn −X| ≥ 1

m
) → 0, as n→ ∞.

Let m→ ∞, we have P(|X| > K) = 0, i.e. |X| ≤ K a.s. For any ε > 0,

E(|Xn −X|) = E(|Xn −X|1{|Xn−X|> ε
2
}) + E(|Xn −X|1{|Xn−X|≤ ε

2
})

≤ 2KP(|Xn −X| > ε

2
) +

ε

2
(since |Xn −X| ≤ |Xn|+ |X| ≤ 2K a.s.)

→ ε

2
, as n→ ∞.
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Let ε→ 0, we have E(|Xn −X|) → 0.

Theorem 2.43. Let {Xn : n ≥ 0} be a sequence of r.v. with Xn ∈ L1, and Xn → X in

probability, then TFAE:

1. {Xn : n ≥ 0} is UI;

2. Xn → X in L1;

3. E(|Xn|) → E(|X|) <∞.

Proof. 1 =⇒ 2. The idea is to truncate Xn at K and −K. For K > 0, define

φK(x) = x1{|x|≤K} +K1{x>K} −K1{x<−K},

then |φK(x)| ≤ K, |φK(x) − x| ≤ |x|1{|x|>K} and |φK(x) − φK(y)| ≤ |x − y|. By triangle

inequality, we have

E(|Xn −X|) ≤ E(|φK(Xn)− φK(X)|) + E(|φK(Xn)−Xn|) + E(|φK(X)−X|)

≤ E(|φK(Xn)− φK(X)|) + E(|Xn|1{|Xn|>K}) + E(|X|1{|X|>K}).

Take ε > 0. For the first term, since |φK(Xn)− φK(X)| ≤ |Xn −X|, for any δ > 0,

P(|φK(Xn)− φK(X)| ≥ δ) ≤ P(|Xn −X| ≥ δ) → 0,

which means φK(Xn) → φK(X) in probability, by Lemma 2.42, φK(Xn) → φK(X) in L1, so

there exists N(ε,K) ∈ Z+, s.t. for any n ≥ N ,

E(|φK(Xn)− φK(X)|) < ε

3
.
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For the second term, since Xn is UI, then for any ε > 0, there exists K1 > 0, s.t. for all n

E(|Xn|1{|Xn|>K1}) <
ε

3
.

For the third term, by Lemma 2.41 and Proposition 2.29,

E(|X|) ≤ lim inf
n→∞

E(|Xn|) ≤ sup
n

E(|Xn|) <∞,

therefore X ∈ L1. By Lemma 2.30, there exists K1 > 0, s.t.

E(|X|1{|X|>K1}) <
ε

3
.

Taken together, we choose K0 = max{K1, K2} and N = N(ε,K0), then for all n ≥ N ,

E(|Xn −X|) ≤ ε

3
+
ε

3
+
ε

3
= ε,

i.e. E(|Xn −X|) → 0.

2 =⇒ 3.By Jensen’s inequality and Xn → X in L1, we have

|E(|Xn|)− E(|X|)| = |E(|Xn| − |X|)| ≤ E(||Xn| − |X||) ≤ E(|Xn −X|) → 0.

3 =⇒ 1.

Theorem 2.44. Let {Xn : n ≥ 0} be a submartingale, then TFAE:

1. it is UI;

2. it converges a.s. and in L1;

3. it converges in L1.
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Proof. 1 =⇒ 2. UI implies supn |Xn| < ∞, thus supnX
+
n ≤ supn |Xn| < ∞, by martingale

convergence theorem (Theorem 2.14), there exists X ∈ L1 s.t. Xn → X a.s., then Xn → X

in probability. By Theorem 2.43, Xn → X in L1.

2 =⇒ 3. Trivial.

3 =⇒ 1. Convergence in L1 implies convergence in probability, then also by Theorem 2.43,

{Xn : n ≥ 0} is UI.

Lemma 2.45. If Xn ∈ L1, and Xn → X in L1, then

E(Xn1A) → E(X1A).

Proof.

|E(Xn1A)− E(X1A)| = |E(Xn1A −X1A)| ≤ E(|Xn1A −X1A|)

= E(|Xn −X|1A) ≤ E(|Xn −X|) → 0.

Lemma 2.46. If Xn is a martingale w.r.t. Fn, and Xn → X in L1, then Xn = E(X|Fn).

Proof. By the property of martingale, for any integer m > n, E(Xm|Fn) = Xn. By the

definition of E(Xm|Fn), for any A ∈ Fn,

E(Xm1A) = E(Xn1A).

Since Xm → X in L1, by Lemma 2.45,

E(X1A) = lim
m→∞

E(Xm1A) = E(Xn1A), ∀A ∈ Fn.

Since Xn ∈ Fn, by the definition of E(X|Fn), we conclude Xn = E(X|Fn).

41



Notes Huarui Zhou Probability

Theorem 2.47. Suppose Xn is a martingale w.r.t. Fn. Then TFAE

1. It is UI

2. It converges a.s. and in L1

3. It converges in L1

4. There exists a r.v. X ∈ L1 s.t. for any n ≥ 0

E(X|Fn) = Xn.

Proof. 1 =⇒ 2 =⇒ 3 is copied from Theorem 2.44.

3 =⇒ 4. From Lemma 2.46.

4 =⇒ 1. From Example 2.37.

Theorem 2.48. Suppose Fn ↑ F∞, i.e. F0 ⊆ F1 ⊆ · · · are sub-σ-field, and F∞ = σ(∪nFn).

If X ∈ L1, then

E(X|Fn) → E(X|F∞) a.s. and in L1.

Proof. By Example 2.4 and Example 2.37, Mn = E(X|Fn) is a martingale and UI. Thus

Theorem 2.47 implies there exists M ∈ L1 s.t. Mn →M a.s. and in L1. The only thing is to

show M = E(X|F∞). Lemma 2.46 implies

E(X|Fn) =Mn = E(M |Fn),

thus for any A ∈ Fn,

E(X1A) = E(Mn1A) = E(M1A).

Therefore E(X1A) = E(M1A) for all A ∈ ∪nFn. Define

C = {A ∈ F : E(X1A) = E(M1A)},
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then C is a λ-system and ∪nFn ⊆ C. By π − λ theorem, we have

F∞ = σ(∪nFn) ⊆ C,

i.e. E(X1A) = E(M1A) for all A ∈ ∪nF∞. And M ∈ F∞ (Since each Mn ∈ F∞, thus their

limit M ∈ F∞), we have M = E(X|F∞).

Theorem 2.49 (Lévy’s 0-1 law). Suppose Fn ↑ F∞, and A ∈ F∞, then

E(1A|Fn) → 1A a.s.

Proof. Let X = 1A ∈ F∞ in Theorem 2.48, we have

E(1A|Fn) → E(1A|F∞) = 1A. a.s.

Corollary 2.50 (Kolmogorov’s 0-1 law). Suppose {Xn : n ≥ 1} are independent random

variables, define tail σ-field by

T =

∞⋂
n=1

σ(Xm,m ≥ n),

then for any A ∈ T , P(A) ∈ {0, 1}, i.e. T is trivial.

Proof. Define Fn = σ(Xm, 1 ≤ m ≤ n), then for any A ∈ T and any n ∈ Z+ A is independent

of Fn because A ∈ σ(Xm,m ≥ n + 1) and σ(Xm,m ≥ n + 1) is independent of Fn. Thus

E(1A|Fn) = E(1A) = P(A). By Lévy’s 0-1 law,

P(A) = E(1A|Fn) → 1A a.s.

therefore P(A) ∈ {0, 1}.
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2.5 Backward martingale

Definition 2.51. Suppose {X−n : n ≥ 0} is a sequence of r.v. w.r.t. F−n with F−n ⊆ F−n+1.

We call {X−n : n ≥ 0} a backward martingale if X0 ∈ L1 and for any n ≥ 1,

E(X−n+1|F−n) = X−n.

Lemma 2.52. Suppose {X−n : n ≥ 0} is a backward martingale. If X0 ∈ Lp for some p ≥ 1,

then X−n ∈ Lp for all n ≥ 1.

Proof. By Jensen’s inequality,

|X−n|p = |E(X−n+1|F−n)|p ≤ E(|X−n+1|p|F−n),

thus

E(|X−n|p) ≤ E(|X−n+1|p).

By induction, E(|Xp
−n| ≤ E(|X0|p) <∞ for all n ≥ 1.

Theorem 2.53. There exists X−∞ ∈ L1 s.t.

X−n → X−∞ a.s. and in L1,

as n→ ∞.

Proof. 1. Let Un be the number of upcrossings of [a, b] by X−n, · · · , X0. Then upcrossing

inequality 2.13 implies

(b− a)E(Un) ≤ E[(X0 − a)+]− E[(X−n − a)+] ≤ E[(X0 − a)+].
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Since Un ↑ U∞, by monotone convergence theorem,

E(U∞) = lim
n→∞

E(Un) ≤ E[(X0 − a)+] <∞,

thus U∞ < ∞ a.s. By the similar argument in the proof of Theorem 2.14, X−∞ exists a.s.

hence also in probability.

2. For any n ∈ Z+, X−n = E(X0|F−n). Since X0 ∈ L1, by Example 2.37, {X−n : n ≥ 0}

is UI. By Lemma 2.52, X−n ∈ L1 for all n ≥ 0, then Theorem 2.43 implies X−n → X−∞ in

L1.

Theorem 2.54. If backward martingale {X−n : n ≥ 0} has X0 ∈ Lp, then as n → ∞,

X−n → X−∞ in Lp.

Proof. 1. By Theorem 2.53, as n→ ∞, X−n → X−∞ a.s.

2. By the Theorem 2.24, for any n ≥ 0, we have

E
[
( sup
−n≤m≤0

|Xm|)p
]
≤
(

p

p− 1

)p

E(|X0|p) <∞.

3. Since (sup−n≤m≤0 |Xm|)p ↑ (supn≥0 |X−n|)p, by monotone convergence theorem,

E
[
(sup
n≥0

|X−n|)p
]
= lim

n→∞
E
[
( sup
−n≤m≤0

|Xm|)p
]
≤
(

p

p− 1

)p

E(|X0|p) <∞,

thus supn≥0 |X−n| ∈ Lp.

4. Since

|X−∞| = lim sup
n≥0

|X−n| ≤ sup
n≥0

|X−n| a.s.

and |X−n| ≤ supn≥0 |X−n|, we have

|X−n −X−∞| ≤ |X−n|+ |X−∞| ≤ 2 sup
n≥0

|X−n| ∈ Lp, a.s.
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Then since |X−n −X−∞| → 0 a.s., by the Lp dominated convergence theorem,

lim
n→∞

E(|X−n −X−∞|p) = 0.

Theorem 2.55. Let F−∞ =
⋂∞

n=0F−n. Then

1. X−∞ = E(X0|F−∞).

2. For any X ∈ L1, as n→ ∞,

E(X|F−n) → E(X|F−∞).

Proof. 1. We only need to show (i) X−∞ ∈ F−∞ and (ii) for any A ∈ F−∞,

E(X−∞1A) = E(X01A). (1)

(i) can be checked by showing {X−∞ < c} ∈ F−n for all n ≥ 0. For (ii), since X−n =

E(X0F−n), we have for any A ∈ F−∞ ⊆ F−n,

E(X−n1A) = E(X01A).

Then (1) holds from Lemma 2.45 and X−n → X−∞ in L1.

2.6 Optional stopping theorem

For submartingale Xn, it is obvious E(Xn) ≥ E(X0), but this is not always true for XN when

N is a stopping time. Optional stopping theorems are talking about when E(XN ) ≥ E(X0)

holds.

Theorem 2.56. Suppose Xn is a submartingale, N is a stopping time, and N is bounded

i.e. P(N ≤ k) = 1 for some k <∞. Then E(XN ) ≥ E(X0).
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Proof. See Lemma 2.20.

Lemma 2.57. Xn is a submartingale, N is a stopping time. If XN∧n is UI, then E(XN ) ≥

E(X0).

Proof. By Proposition 2.12, XN∧n is a UI submartingale, by the property of submartingale,

E(X0) = E(XN∧0) ≤ E(XN∧n).

By Theorem 2.44, XN∧n → XN a.s. and in L1, thus

E(XN )− E(X0) = E(XN −XN∧n) + E(XN∧n)− E(X0) ≥ E(XN −XN∧n) → 0.

Lemma 2.58. Xn is a UI submartingale, N is a stopping time, then XN∧n is UI.

Proof. 1. X+
n is a submartingale.

E(X+
n+1|Fn) ≥ E(Xn+1|Fn) ≥ Xn.

2. N ∧ n ≤ n, then by Lemma 2.20,

E(X+
N∧n) ≤ E(X+

n ).

3. |X+
n | ≤ |Xn| and Example 2.35 implies that X+

n is also UI.

4. By the property of UI and Step 2,

sup
n

E(X+
N∧n) ≤ sup

n
E(X+

n ) <∞.

5.By Martingale convergence theorem (2.14), XN∧n → XN a.s. and E(|XN |) <∞.
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6. prove XN∧n is UI. For any M > 0,

E(|XN∧n|1{|XN∧n|>M}) = E(|XN |1{|XN |>M}1{N≤n}) + E(|Xn|1{|Xn|>M}1{N>n})

≤ E(|XN |1{|XN |>M}) + E(|Xn|1{|Xn|>M}).

Take ε > 0. For the first term, since E(|XN |) <∞, by Lemma 2.30, there exists M1 > 0 s.t.

E(|XN |1{|XN |>M1}) <
ε

2
.

For the second term, since Xn is UI, then there exists M2 > 0 s.t.

sup
n

E(|Xn|1{|Xn|>M2}) <
ε

2
.

Therefore for M ≥ max{M1,M2},

sup
n

E(|XN∧n|1{|XN∧n|>M}) <
ε

2
+
ε

2
= ε,

which implies XN∧n is UI.

Theorem 2.59. Suppose Xn is a UI submartingale, N is a stopping time. Then E(XN ) ≥

E(X0).

Proof. By Lemma 2.57 and 2.58.

Actually, from Lemma 2.58, we can use a weaker assumption than the above UI condition.

Theorem 2.60. Suppose Xn is a submartingale, N is a stopping time. If E(|XN |) <∞ and

Xn1{N>n} is UI, then XN∧n is UI and hence E(XN ) ≥ E(X0).

Theorem 2.61. Suppose Xn is a submartingale, N is a stopping time. If the following two

conditions hold:
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1. there exists B > 0, s.t.

E(|Xn+1 −Xn||Fn) ≤ B a.s.

2. E(N) <∞

then XN∧n is UI, hence E(XN ) ≥ E(X0).

Proof. 1.By Proposition 2.12,

XN∧n = X0 +

n∑
m=1

(Xm −Xm−1)1{N≥m},

thus

|XN∧n| ≤ |X0|+
n∑

m=1

|Xm −Xm−1|1{N≥m} ≤ |X0|+
∞∑

m=1

|Xm −Xm−1|1{N≥m} =: Y.

2. We only need to prove E(|Y |) <∞, then by Example 2.34, XN∧n is UI. Notice that

E(|Xm −Xm−1|1N≥m) = E[E(|Xm −Xm−1||Fm−1)1N≥m]

≤ E(B1N≥m)

= BP(N ≥ m),

then by monotone convergence theorem and tail sum formula,

E

[ ∞∑
m=1

|Xm −Xm−1|1{N≥m}

]
≤ B

∞∑
m=1

P(N ≥ m) = BE(N) <∞,

thus E(|Y |) <∞.

Application

Theorem 2.62 (Wald’s equation). Let S0 = 0, Sn = ξ1 + · · · + ξn where ξi are independent

with E(ξi) = µ. If N is a stopping time with E(N) <∞, then E(SN ) = µE(N).
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Proof. Let Xn = Sn − nµ, then Xn is a martingale. Noticing that

E(|Xn+1 −Xn||Fn) = E(|ξn+1 − µ|Fn) = E(|ξn+1 − µ|),

then by Theorem 2.61,

0 = E(X0) = E(XN ) = E(SN −Nµ) = E(SN )− µE(N).

We also show Wald’s second equation here although the proof doesn’t apply any optional

stopping theorem.

Theorem 2.63 (Wald’s second equation). Let S0 = 0, Sn = ξ1+ · · ·+ ξn where ξi i.i.d. with

E(ξi) = 0 and Var(ξi) = σ2. If N is a stopping time with E(N) <∞, then E(S2
N ) = σ2E(N).

Proof. Let Xn = S2
n − nσ2, then Xn is a martingale and so is XN∧n. Thus

0 = E(XN∧0) = E(XN∧n) = E(S2
N∧n)− σ2E(N ∧ n). (1)

Since N ∧ n ↑ N , by monotone convergence theorem, we have E(N ∧ n) → E(N). By (1), we

have E(S2
N∧n) = σ2E(N ∧ n) ≤ σ2E(N) <∞, thus

sup
n

E(S2
N∧n) ≤ σ2E(N) <∞.

Since Sn is a martingale, by L2 convergence theorem (Theorem 2.25), SN∧n → SN a.s. and

in L2. Therefore

‖‖SN∧n‖2 − ‖SN‖2‖2 ≤ ‖SN∧n − SN‖2 =
√

E[(SN∧n − SN )2] → 0,
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i.e. E(S2
N∧n) → E(S2

N ). Taken together, we have

0 = lim
n→∞

[E(S2
N∧n)− σ2E(N ∧ n)] = E(S2

N )− σ2E(N).
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3 Markov Chain

3.1 Construction of Markov chain

Definition 3.1 (Transition probability). Let S be a non-empty set, S is a σ-field on S. We

call p : S × S → [0, 1] is a transition probability if

(1) For any fixed point x ∈ S, p(x, ·) : S → [0, 1] is a probability measure on (S,S).

(2) For any fixed set A ∈ S, p(·, A) : S → [0, 1] is a S-measurable function.

Definition 3.2. Suppose {Xn : n ≥ 1} is a r.v. sequence on (S,S) w.r.t. Fn, i.e. Xn ∈ Fn.

We call Xn is a Markov chain with transition probability p, if for any B ∈ S,

P(Xn+1 ∈ B|Fn) = p(Xn, B).

Theorem 3.3. Suppose (S,S) is a measurable space with S ⊆ R, p is a transition probability

on (S,S), µ is the initial distribution on (S,S). Then we can define the probability measure

Pn on (Sn,Sn) by

Pn(B) =

∫
B0

(∫
B1

· · ·
(∫

Bn

p(xn−1, dxn)
)
· · · p(x0, dx1)

)
µ(dx0)

=

∫
B0

µ(dx0)
∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn),

where B = B0 × B1 × · · · × Bn ∈ Sn. It is easy to show that Pn, n ≥ 0 are consistent.

By Kolmogorov’s extension theorem, there exists a unique probability measure Pµ on (Ω,F) =

(SN,SN), s.t. for any n ∈ N and B = B0 × B1 × · · · × Bn ∈ Sn, we have

Pµ(ω : (ω1, · · · , ωn) ∈ B) = Pn(B).

Now we extend Pn from the space of finite products to that of countable products. Define
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Xn : Ω → S by

ω = (ω0, · · · , ωn, · · · ) 7→ ωn.

Fn = σ(Xi : 1 ≤ i ≤ n). Then Xn is a Markov chain w.r.t Fn with transition probability p.

Proof. 1.We only need to show for any B ∈ S,

P(Xn+1 ∈ B|Fn) = p(Xn, B). (1)

From the construction, we have

P(Xn+1 ∈ B|Fn) = Pµ(ωn+1 ∈ B|Fn) = Eµ(1{ω :ωn+1∈B}|Fn).

To show (1) holds, only need to prove

Eµ(1{ω :ωn+1∈B}|Fn) = p(ωn, B), ∀ω = (ω0, · · · , ωn, · · · ) ∈ Ω.

By definition of conditional expectation, only need to show for any A ∈ Fn,

Eµ[1{ω :ωn+1∈B}1A] = Eµ[p(ωn, B)1A]. (2)

2. We will prove (2) holds for a weaker case first, then apply π−λ theorem to prove it holds

for all A ∈ Fn. Let A = {X0 ∈ B0, · · · , Xn ∈ Bn} = {ω : ω0 ∈ B0, · · · , ωn ∈ Bn} ∈ Fn, then

Eµ[1{ω :ωn+1∈B}1A] = Eµ[1{ω :ω0∈B0,··· ,ωn∈Bn,ωn+1∈B}]

= Pµ(ω : ω0 ∈ B0, · · · , ωn ∈ Bn, ωn+1 ∈ B)

= Pn+1[B0 × B1 × · · · × Bn × B]

=

∫
B0

µ(dx0)
∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)
∫
B

p(xn, dxn+1)

=

∫
B0

µ(dx0)
∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)p(xn, B)
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And

Eµ[p(ωn, B)1A] =

∫
Ω

p(ωn, B)1{ω :ω0∈B0,··· ,ωn∈Bn} dPµ.

To show the above two items are equal, we can do it first for the indicator, then simple

functions and finally any bounded measurable function. Let C ∈ S, then

Eµ[1C(ωn)1A] = Eµ[1{ω :ω0∈B0,··· ,ωn∈Bn∩C}]

= Pµ[ω : ω0 ∈ B0, · · · , ωn ∈ Bn ∩ C]

= Pn[B0 × B1 × · · · × Bn ∩ C]

=

∫
B0

µ(dx0)
∫
B1

p(x0, dx1) · · ·
∫
Bn∩C

p(xn−1, dxn)

=

∫
B0

µ(dx0)
∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)1C(xn)

Then by linearity, for any simple function f , we have

Eµ[f(ωn)1A] =

∫
B0

µ(dx0)
∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)f(xn), (3)

By the bounded convergence theorem, (3) also holds for any bounded S-measurable function,

particularly for p(x,B).

3. Now we will prove (2) holds for any A ∈ Fn. Define

C1 = {A ∈ Fn : (2) holds},

easy to verify C1 is a λ-system. Define the set of rectangles

C2 = {{ω : ω0 ∈ B0, · · · , ωn ∈ Bn} : Bi ∈ S, 0 ≤ i ≤ n},
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C2 is a π-system, and C2 ⊆ C1 by Step 2. Then by π − λ theorem,

Fn = σ(C2) ⊆ C1.

3.2 Properties of Markov chain

We will keep using the notations in the last section. (Ω,F ,Pµ) is the probability space

induced by the state space (S,S), transition probability p and initial distribution µ. Xn(ω) =

ωn is the Markov chain.

Theorem 3.4 (Monotone class theorem). Suppose A is a π-system containing Ω, H ⊆ {f :

Ω → R} and satisfies

(1) A ∈ A implies 1A ∈ H

(2) If f, g ∈ H then f + g ∈ H; if c ∈ R and f ∈ H, then cf ∈ H

(3) If fn ∈ H, fn ≥ 0, and fn ↑ f , then f ∈ H.

Then {f : Ω → R : f <∞, f ∈ σ(A)} ⊆ H.

Proof. 1. Claim: G = {A ∈ 2Ω : 1A ∈ H} is a λ-system.

By(1), Ω ∈ A ⊆ G. Suppose A,B ∈ G and A ⊆ B, then 1A,1B ∈ H, by (2), 1B\A = 1B−1A ∈

H, so B \ A ∈ G. Suppose An ∈ G and An ↑ A, then 1An
∈ H and 1An

↑ A, by (3), 1A ∈ H,

thus A ∈ G.

2.Since A ⊆ G and A is a π-system, by π − λ theorem, σ(A) ⊆ G.

3. Thus for any A ∈ σ(A), 1A ∈ H, and by (2), any simple function f ∈ σ(A) belongs to H.

For any bounded σ(A)-measurable function f , there is a non-negative fn s.t. fn ↑ f , thus by

(3), f ∈ H.

Proposition 3.5. Suppose Xn is a Markov chain with transition probability p.
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1. For any bounded S-measurable f ,

E(f(Xn+1)|Fn) =

∫
S

p(Xn, dy)f(y) (1)

2. For any bounded S-measurable fm,

E

[
n∏

m=0

fm(Xm)

]
=

∫
S

µ(dx0)f0(x0)
∫
S

p(x0, dx1)f1(x1) · · ·
∫
S

p(xn−1, dxn)fn(xn). (2)

Proof. 1. First S is a σ-field, thus a π-system. Define H = {f : Eq(1) holds for A := S},

then H satisfies the three conditions in Theorem 3.4: i) for any A ∈ S,

E(1A(Xn+1)|Fn) = E(Xn+1 ∈ A|Fn) = p(Xn, A) =

∫
S

p(Xn, dy)1A;

ii) obviously iii) by monotone convergence theorem. Thus H contains all bounded S-

measurable function.

2. First, (2) holds for n = 0, since

E(f0(X0)) =

∫
S

f0(x0)µ(dx0).

56



Notes Huarui Zhou Probability

Suppose (2) holds for n− 1, then by the property of conditional expectation,

E

[
n∏

m=0

fm(Xm)

]
= E

[
E

(
n∏

m=0

fm(Xm)|Fn−1

)]

= E

[
n−1∏
m=0

fm(Xm)E (fn(Xn)|Fn−1)

]
(since f(Xm) ∈ Fn−1 for m ≤ n− 1)

= E

[
n−1∏
m=0

fm(Xm)

∫
S

p(Xn−1, dy)fn(y)
]

= E

[
n−2∏
m=0

fm(Xm)fn−1(Xn−1)g(Xn−1)

]
(let the integral be g(Xn−1))

=

∫
S

µ(dx0)f0(x0)
∫
S

p(x0, dx1)f1(x1) · · ·
∫
S

p(xn−2, dxn−1)fn−1(xn−1)g(xn−1)

=

∫
S

µ(dx0)f0(x0)
∫
S

p(x0, dx1)f1(x1) · · ·
∫
S

p(xn−1, dxn)fn(xn)

Thus (2) holds for all n ∈ N.

Proposition 3.6. If f : Sn+1 → R is bounded and Sn+1-measurable, then

E[f(X0, X1, · · · , Xn)] =

∫
S

f(x0, x1, · · · , xn)µ(dx0)
∫
S

p(x0, dx1) · · ·
∫
S

p(xn−1, dxn). (1)

Proof. Let A = {rectangles in Sn+1}, H = {bounded and A-measurable f s.t. (1) holds}.

We will show three conditions in monotone class theorem holds. i) for rectangle A = A0 ×
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A2 × · · · × An ∈ A, we have

E[1A(X0, X1, · · · , Xn)] = E[
n∏

i=0

1Ai
(Xi)]

= P(X0 ∈ A0, X1 ∈ A1, · · · , Xn ∈ An)

=

∫
A0

µ(dx0)
∫
A1

p(x0, dx1) · · ·
∫
An

p(xn−1, dxn)

=

∫
S

1A0
(x0)µ(dx0)

∫
S

1A1
(x1)p(x0, dx1) · · ·

∫
S

1An
(xn)p(xn−1, dxn)

=

∫
S

1A(x0, x1, · · · , xn)µ(dx0)
∫
S

p(x0, dx1) · · ·
∫
S

p(xn−1, dxn)

thus 1A ∈ H. ii) obviously iii) by monotone convergence theorem. Thus by monotone class

theorem, H contains all bounded and σ(A) = Sn+1-measurable functions.

Remark. The second result in Proposition 3.5 can be a special case of this proposition.

Definition 3.7. Suppose Ω = SN, n ∈ N, we call θn : Ω → Ω a shift operator if

ω = (ω0, ω1, · · · ) 7→ (ωn, ωn+1, · · · ).

Theorem 3.8 (Markov property). Let Y : Ω → R be bounded and measurable, then

Eµ(Y ◦ θm|Fm) = EXm
Y.

Remark. Here EXm
Y is a r.v., if Xm = x, EXm

Y = ExY which takes µ = δ(x) in EµY .

Proof. 1.By the definition of conditional expectation, we only need to show for any A ∈ Fm,

Eµ(Y ◦ θm1A) = Eµ(EXm
Y 1A). (1)

2. Consider A is a rectangle first, i.e. A = {ω : ω0 ∈ A0, ω1 ∈ A1, · · · , ωm ∈ Am}. For
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k = 0, 1, · · · , n, let gk : S → R be bounded and measurable and

Y (ω) =

n∏
k=0

gk(ωk) =

n∏
k=0

gk ◦Xk(ω). (2)

Define

fk =


1Ak

0 ≤ k < m

1Ak
g0 k = m

gk−m m < k ≤ m+ n,

by Proposition 3.5,

Eµ

[
m+n∏
k=0

fk(Xk)

]
=

∫
S

µ(dx0)f0(x0)
∫
S

p(x0, dx1)f1(x1) · · ·
∫
S

p(xm+n−1, dxm+n)fm+n(xm+n)

For the lefthand side,

LHS = E

[
m+n∏
k=m

gk−m(Xk)

m∏
k=0

1Ak

]

= E

[
m+n∏
k=m

gk−m(Xk)1A

]

= E

[
n∏

k=0

gk(Xk+m)1A

]

= Eµ(Y ◦ θm1A).
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For the righthand side,

RHS =

∫
A0

µ(dx0)
∫
A1

p(x0, dx1) · · ·
∫
Am

p(xm−1, dxm)g0(xm)

∫
S

p(xm, dxm+1)g1(xm+1) · · ·∫
S

p(xm+n−1, dxm+n)gn(xm+n)

=

∫
A0

µ(dx0)
∫
A1

p(x0, dx1) · · ·
∫
Am

p(xm−1, dxm)φ(xm)

= Eµ(φ(Xm)1A), (by Proposition 3.5)

where

φ(xm) = g0(xm)

∫
S

p(xm, dxm+1)g1(xm+1) · · ·
∫
S

p(xm+n−1, dxm+n)gn(xm+n)

= g0(xm)

∫
S

p(xm, dx1)g1(x1) · · ·
∫
S

p(xn−1, dxn)gn(xn)

= Exm

[
n∏

k=0

gk(Xk)

]
(by Proposition 3.5)

= ExmY

Replace x with r.v. Xm then we have

φ(Xm) = EXm
Y,

Thus RHS = Eµ(EXm
Y 1A). We obtain (1) holds in this case.

3. For Y defined by (2), we will prove (1) holds for any A ∈ Fm. Let

C1 = {A ∈ 2Ω : (1) holds on A},

easy to verify that A is a λ-system. Define

C2 = {rectangles ∈ Fm},
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C2 is a π-system and C2 ⊆ C1, then by π − λ theorem, Fm = σ(C2) ⊆ C1, thus (1) holds for

any A ∈ Fm.

4. The last step is to prove (1) holds for all bounded and measurable Y . Fix A ∈ Fm, define

H = {bounded and measurable Y : (1) holds},

by Step 3, any form of Y defined by (2) belongs to H. And define

A = {rectangles ∈ F = SN},

A is a π-system and Ω = SN ∈ A. Furthermore H satisfies all three conditions in Theorem

3.4: (i)for any A = {ω : ω0 ∈ A0, ω1 ∈ A1, · · · , ωk ∈ Ak} ∈ A,

1A =

k∏
i=1

1Ai
∈ H,

(ii) obviously (iii) by monotone convergence theorem. Thus by Theorem 3.4, H contains all

bounded and F = σ(A)-measurable functions.

Theorem 3.9. For any bounded function Y ∈ σ(Xk, k ≥ n),

Eµ(Y |Fn) = Eµ(Y |Xn). (1)

Proof. Since Y ∈ σ(Xk, k ≥ n), we have Y ◦ θ−n is bounded and F-measurable, and

Y = (Y ◦ θ−n) ◦ θn.

By Markov property (Theorem 3.8),

Eµ(Y |Fn) = Eµ[(Y ◦ θ−n) ◦ θn|Fn] = EXn
(Y ◦ θ−n),
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take conditional expectation on Xn (i.e. σ(Xn)), we have

Eµ[Eµ(Y |F)|Xn] = Eµ[EXn
(Y ◦ θ−n)|Xn],

the left side is Eµ(Y |Xn) since σ(Xn) ⊆ Fn, the right side is EXn
(Y ◦ θ−n) = Eµ(Y |Fn) since

EXn
(Y ◦ θ−n) ∈ σ(Xn), thus

Eµ(Y |Fn) = Eµ(Y |Xn).

Corollary 3.10. Let A ∈ Fn, B ∈ σ(Xk, k ≥ n), then

Pµ(A ∩ B|Xn) = Pµ(A|Xn)Pµ(B|Xn).

Proof.

Pµ(A ∩ B|Xn) = Eµ(1A∩B|Xn)

= Eµ[Eµ(1A1B|Fn)|Xn] (Since σ(Xn) ⊆ Fn)

= Eµ[1AEµ(1B|Fn)|Xn] (Since 1A ∈ Fn)

= Eµ[1AEµ(1B|Xn)|Xn] (By Theorem 3.9)

= Eµ(1A|Xn)Eµ(1B|Xn)

= Pµ(A|Xn)Pµ(B|Xn).

Remark. The above result shows that the past and future are conditionally independent

given the present.

Theorem 3.11 (Strong Markov property). Suppose N is a stopping time, define

FN = {A : A ∩ {N = n} ∈ Fn ∀n ∈ N}.
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For n ∈ N, suppose Yn : Ω → R is measurable and supn |Yn| ≤M . Then on {N <∞},

Eµ(YN ◦ θN |FN ) = EXN
YN .

Remark. EXN
YN (ω) is a r.v. and when N(ω) = n, XN (ω) = x, it has value ExYn.

Proof. We want to show for any A ∈ FN ,

E[YN ◦ θN1A∩{N<∞}] = E[EXN
YN1A∩{N<∞}].

Since

{N <∞} =

∞⊔
n=0

{N = n},

we have

E[YN ◦ θN1A∩{N<∞}] = E[YN ◦ θN1A∩
⊔∞

n=0{N=n}]

= E[YN ◦ θN1⊔∞
n=0 A∩{N=n}]

=

∞∑
n=0

E[Yn ◦ θn1A∩{N=n}]

=

∞∑
n=0

E[EXn
Yn1A∩{N=n}] (by Theorem 3.8 and A ∩ {N = n} ∈ Fn)

= E[EXN
YN1A∩{N<∞}].

Theorem 3.12 (Reflection principle). Let {Xk : k ≥ 1} be a sequence of i.i.d. r.v. with

P(Xk > 0) = P(Xk < 0). Let S0 = 0, and for n ≥ 1, Sn =
∑n

k=1Xk. For any a > 0, we have

P
(

sup
1≤m≤n

Sm ≥ a

)
≤ 2P(Sn ≥ a).
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Proof. Let N = inf{m ≤ n : Sm ≥ a}, define inf∅ = ∞. Notice that

{N ≤ n} = {Sm ≥ a for some m ≤ n} = {sup
m≤n

Sm ≥ a},

so

P0(N ≤ n) = P0(sup
m≤n

Sm ≥ a).

For m ≤ n, define

Ym = 1{Sn−m≥a},

then Ym ◦ θm = 1{Sn≥a}. On {N <∞} = {N ≤ n},

YN ◦ θN (ω) = 1{Sn≥a}, (1)

and by the strong Markov property,

E0(YN ◦ θN |FN ) = ESN
(YN ). (2)

If x ≥ a, then for m ≤ n,

Ex(Ym) = Px(Sn−m ≥ a) ≥ Px(Sn−m ≥ x) ≥ 1

2
,

thus on {N ≤ n},

ESN
(YN ) ≥ 1

2
.

Since {N ≤ n} ∈ FN , applying the definition of conditional expectation to (2), we have

E0(YN ◦ θN1{N≤n}) = E0[ESN
(YN )1{N≤n}] ≥ E0[

1

2
1{N≤n}] =

1

2
P0(N ≤ n),
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and by (1),

E0(YN ◦ θN1{N≤n}) = E0(1{Sn≥a}∩{N≤n}) = P0({Sn ≥ a} ∩ {N ≤ n}) = P0(Sn ≥ a),

since {Sn ≥ a} ⊆ {N ≤ n}.

3.3 Basic concepts of Markov chain on a countable state space

Now consider the Markov chain Xn in a countable state space S.

3.3.1 Multistep transition probability

Lemma 3.13. For any i0, i1, · · · , in ∈ S,

Pµ(X0 = i0, X1 = i1, · · · , Xn = in) = µ(i0)

n∏
m=1

p(im−1, im).

Proof. By definition, let B0 = {i0}, B1 = {i1}, · · ·Bn = {in}, then

Pµ(X0 = i0, X1 = i1, · · · , Xn = in) =

∫
B0

µ(dx0)
∫
B1

p(x0, dx1) · · ·
∫
Bn

p(xn−1, dxn)

= µ(i0)

n∏
m=1

p(im−1, im).

Definition 3.14. For any x, y ∈ S, n ∈ Z+, define pn(x, y) is the probability of starting from

x and getting to y in time n, i.e.

pn(x, y) = Px(Xn = y).
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Lemma 3.15. For any x, y ∈ S, n ∈ Z+,

pn(x, y) =
∑

x1,··· ,xn−1∈S
p(x, x1)p(x1, x2) · · · p(xn−1, y).

Proof. By definition, then

Px(Xn = y) =

∫
S

δx(dx0)
∫
S

p(x0, dx1) · · ·
∫
S

p(xn−2, dxn−1)

∫
{y}

p(xn−1, dxn)

=
∑
x0∈S

δx(x0)
∑
x1∈S

p(x0, x1) · · ·
∑

xn−1∈S
p(xn−2, xn−1)p(xn−1, y)

=
∑
x1∈S

p(x, x1) · · ·
∑

xn−1∈S
p(xn−2, xn−1)p(xn−1, y)

=
∑

x1,··· ,xn−1∈S
p(x, x1)p(x1, x2) · · · p(xn−1, y).

Lemma 3.16. For any x, y ∈ S, k ∈ N, n ∈ Z+

Pµ(Xk+n = y|Xk = x) = pn(x, y).

Proof. By Markov property and Theorem 3.9,

Pµ(Xk+n = y|Xk) = Pµ(Xk+n = y|Fk) = Eµ(1{Xn=y}◦θk|Fk) = EXk
(1{Xn=y}) = PXk

(Xn = y),

when Xk = x, we have

Pµ(Xk+n = y|Xk = x) = Px(Xn = y) = pn(x, y).
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Lemma 3.17 (distribution at time n). For any j ∈ S,

Pµ(Xn = j) =
∑
i∈S

µ(i)pn(i, j).

Proof. By Proposition 3.5,

Pµ(Xn = j) = Eµ[Eµ(1{Xn=j}|X0)]

= Eµ[p
n(X0, j)]

=

∫
S

pn(x0, j)µ(dx0)

=
∑
x0∈S

pn(x0, j)µ(x0)

Theorem 3.18 (Chapman-Kolmogorov equation). Suppose x, z ∈ S, then

Px(Xm+n = z) =
∑
y∈S

Px(Xm = y)Py(Xn = z),

i.e.

pm+n(x, z) =
∑
y∈S

pm(x, y)pn(y, z).
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Proof.

Px(Xm+n = z) = Ex(1{Xm+n=z})

= Ex[Ex(1{Xm+n=z}|Fm)]

= Ex[Ex(1{Xn=z} ◦ θm|Fm)]

= Ex[EXm
(1{Xn=z})] (by Theorem 3.8)

= Ex[PXm
(Xn = z)]

=
∑
y

Px(Xm = y)Py(Xn = z)

3.3.2 Time of the k-th return

Definition 3.19. For any x, y ∈ S,

1. Define T k
y to be the time of k-th visit to y, i.e. T 0

y = 0,

T k
y = inf{n ∈ N : n > T k−1

y , Xn = y}

and inf∅ = ∞.

2. Denote Ty = T 1
y > 0.

3. Define ρxy is the probability of starting from x and getting to y eventually, i.e.

ρxy = Px(Ty <∞).

Lemma 3.20. Let x, y, z ∈ S, then

ρxz ≥ ρxyρyz.
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Proof. We observe that if a chain can initiate from state x and eventually reach state y, and

it can also initiate from state y and eventually reach state z, then it implies that the chain

can initiate from state x and eventually reach state z. So on {X0 = x}

{Ty <∞} ∩ {Tz ◦ θTy
<∞} ⊆ {Tz <∞},

thus

ρxz = Px(Tz <∞)

≥ Px(Tz ◦ θTy
<∞, Ty <∞)

= Ex[1{Tz<∞} ◦ θTy
1{Ty<∞}]

= Ex[Ey(1{Tz<∞})1{Ty<∞}] (∗)

= Ex[Py(Tz <∞)1{Ty<∞}]

= Py(Tz <∞)Px(Ty <∞)

= ρyzρxy,

where (∗) holds because we can apply the strong Markov property (Theorem 3.11) to get

Ex(1{Tz<∞} ◦ θTy
|FTy

) = EXTy
(1{Tz<∞}) = Ey(1{Tz<∞}),

then use {Ty <∞} ∈ FTy
and the definition of conditional expectation.

Lemma 3.21. For x, y ∈ S and x 6= y, TFAE,

1. ρxy > 0

2. pn(x, y) > 0 for some n ≥ 1.

3. there exists i0 = x, i1, · · · , in = y s.t. p(ir−1, ir) > 0 for any r = 1, · · · , n.
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Proof. 1 =⇒ 2.Suppose ρxy > 0. Then

0 < ρxy = Px(Ty <∞) = Px(

∞⊔
n=1

{Ty = n}) =
∞∑
n=1

P(Ty = n) ≤
∞∑
n=1

P(Xn = y) =

∞∑
n=1

pn(x, y).

2 =⇒ 3. By Lemma 3.15,

pn(x, y) =
∑

x1,··· ,xn−1∈S
p(x, x1)p(x1, x2) · · · p(xn−1, y),

thus pn(x, y) > 0 implies p(x, x1)p(x1, x2) · · · p(xn−1, y) > 0 for some x, x1, · · · , xn−1, y.

3 =⇒ 1. Since {Xn = y} ⊆ {Ty <∞},

pn(x, y) = Px(Xn = y) ≤ Px(Ty <∞) = ρxy,

and by Lemma 3.15,

pn(x, y) ≥ p(x, x1)p(x1, x2) · · · p(xn−1, y) > 0,

thus ρxy > 0.

Lemma 3.22. T k
y : Ω → N is a stopping time.

Proposition 3.23. Px(T
k
y <∞) = ρxyρ

k−1
yy .

Proof. 1.We will prove it by induction. For k = 1, Px(T
1
y ) = Px(Ty) = ρxy. Suppose it holds

for some k ≥ 2. We will prove it also holds for k + 1.

2.Define

Y (ω) = 1{Ty<∞} =


1 if ωn = y for some n

0 otherwise

Let N = T k
y , then Y ◦ θN = 1 if and only if T k+1

y <∞ (because θN (ω) = (ωN , ωN+1, · · · ) and
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if the (k + 1)-th return to y happens after N , there must be a n > N s.t. ωn = y). Thus

Y ◦ θN = 1{T k+1
y <∞}.

3.By the Strong Markov property (Theorem 3.11), on {N <∞},

Ex(Y ◦ θN |FN ) = EXN
Y.

4.Since N = T k
y , on {N <∞}, XN = y, then

EXN
Y = EyY = E(1{Ty<∞}) = Py(Ty <∞) = ρyy.

5.Therefore

Px(T
k+1
y <∞) = Px({T k+1

y <∞}1{N<∞}) + Px({T k+1
y <∞}1{N=∞})

= Px({T k+1
y <∞}1{N<∞}) (since {T k+1

y <∞} ⊆ {T k
y <∞} = {N = ∞}c)

= Ex[Y ◦ θN1{N<∞}] (by Step 2)

= Ex[EXN
Y 1{N<∞}] (by Step 3)

= Ex[ρyy1{N<∞}] (by Step 4)

= ρyyPx(T
k
y <∞)

= ρxyρ
k
yy. (by the induction hypothesis in Step 1)
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3.4 Exit distribution and exit time

Definition 3.24. • For any C ⊆ S, define the hitting time on C as

VC = inf{n ≥ 0 : Xn ∈ C}.

• For any A,B ⊆ S with A∩B = ∅ , define the probability of exit at set A as Px(VA < VB).

Lemma 3.25. Suppose C ⊆ S, S \ C is finite, and for any x ∈ S \ C, Px(VC < ∞) > 0.

Then

1. there exists 0 < N <∞ and 0 < ε ≤ 1, s.t. for any x ∈ S \ C and k ∈ Z+,

Px(TC > kN) ≤ (1− ε)k. (1)

2. Px(TC <∞) = 1 for any x ∈ S − C.

Proof. 1. Since for any x ∈ S − C, Px(TC <∞) > 0, we can find Nx > 0, s.t.

Px(TC ≤ Nx) > 0,

otherwise

Px(TC <∞) > 0 = Px(

∞⋃
n=1

{TC ≤ n}) ≤
∞∑
n=1

Px(TC ≤ n) = 0.

Let N = maxx∈S−C Nx, then

Px(TC ≤ N) > 0, ∀x ∈ S − C.

And let ε = minx∈S−C Px(TC ≤ N), then

Px(TC ≤ N) ≥ ε, ∀x ∈ S − C.
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Thus

Px(TC > N) = Px({TC ≤ N}c) = 1− Px(TC ≤ N) ≤ 1− ε, ∀x ∈ S − C, (2)

i.e. we find N and ε s.t. (1) holds for k = 1. Suppose that (1) also holds for k, we will prove

the case k + 1. By the Markov property,

Ex(1{TC>N} ◦ θkN |FkN ) = EXkN
1{TC>N} = PXkN

(TC > N), (3)

thus

Px(TC > (k + 1)N) = Ex[(1{TC>N} ◦ θkN ) · 1{TC>kN}]

= Ex[PXkN
(TC > N) · 1{TC>kN}] (by (3) and {TC > kN} ∈ FkN )

≤ (1− ε)Ex(1{TC>kN}) (by (2) and XkN ∈ S − C)

= (1− ε)Px(TC > kN)

≤ (1− ε)k+1. (by induction hypothesis)

By induction, we have shown (1) holds for any k ∈ Z+.

2. Let k → ∞ in (1), we have Px(TC = ∞) = 0, i.e. Px(TC <∞) = 1.

Theorem 3.26 (Exit distribution). Suppose A,B ⊆ S with A∩B = ∅, S \ (A∪B) is finite,

Px(VA ∧ VB <∞) > 0 for all x ∈ S \ (A ∪B). Then h(x) = Px(VA < VB) is the only solution

of the equation 
h(x) =

∑
y∈S

p(x, y)h(y), ∀x ∈ S \ (A ∪ B);

h(x) = 1, ∀x ∈ A;

h(x) = 0, ∀x ∈ B.

(1)

Proof. 1. h(x) = Px(VA < VB) satisfies (1).
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For any x /∈ A ∪ B, VA and VB must ≥ 1, thus 1{VA<VB} ◦ θ1 = 1{VA<VB}, then

h(x) = Px(VA < VB) = E(1{VA<VB} ◦ θ1)

= Ex[Ex(1{VA<VB} ◦ θ1|F1)]

= Ex[PX1
(VA < VB)]

= Ex(h(X1))

=
∑
y∈S

p(x, y)h(y)

2. If h(x) satisfies (1), then Yn = h(Xn∧VA∪B
) is a martingale.

First since h(x) = Px(VA < VB) ∈ [0, 1], E(|Yn|) ≤ 1 < ∞. Second, since n ∧ VA∪B ≤ n,

Xn∧VA∪B
∈ Fn, thus Yn ∈ Fn. Third, we will show E(Yn+1|Fn) = Yn on both {VA∪B ≥ n}

and {VA∪B < n}. On {VA∪B ≥ n}, Yn = h(Xn), thus

E(Yn+1|Fn) = E(h(Xn+1)|Fn) = E(h(X1)◦θn|Fn) = EXn
h(X1) =

∑
y∈S

p(Xn, y)h(y) = h(Xn) = Yn.

On {VA∪B < n} ∈ Fn, Yn = h(XVA∪B
) ∈ Fn for any n, thus

E(Yn+1|Fn) = E[h(XVA∪B
)|Fn] = h(XVA∪B

) = Yn.

Now we proved E(Yn+1|Fn) = Yn and hence Yn is a martingale.

3. h(x) = Px(VA < VB) is the only solution of (1).

Suppose h satisfies (1), then h(x) = Ex(h(X1)). Since Yn is a martingale, Ex(Yn) = Ex(Y1)

for any n. And since x /∈ A ∪ B, VA∪B ≥ 1, we have Y1 = h(X1). Thus

Ex[h(Xn∧VA∪B
)] = Ex(h(X1)) = h(x). (2)
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By the Lemma 3.25, VA∪B <∞ a.s., then let n→ ∞, (2) becomes

h(x) = Ex[h(XVA∪B
)].

Next, we will prove 1{VA<VB} = h(XVA∪B
). If ω ∈ {ω : VA(ω) < VB(ω)}, then XVA∪B

= XVA
∈

A, thus

1{VA<VB}(ω) = 1 = h(XVA
) = h(XVA∪B

).

If ω ∈ {ω : VA(ω) < VB(ω)}, XVA∪B
= XVB

∈ B, then

1{VA<VB}(ω) = 0 = h(XVB
) = h(XVA∪B

).

Therefore 1{VA<VB} = h(XVA∪B
), hence

Px(VA < VB) = Ex(1{VA<VB}) = Ex(h(XVA∪B
)) = h(x).

Example 3.27 (Wright-Fisher model). Suppose state space is S = {0, 1, 2, · · · } and the

transition probability is

p(i, j) =

(
N

j

)(
i

N

)j (
1− i

N

)N−j

.

Then for any 0 ≤ x ≤ N ,

Px(VN < V0) =
x

N
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Proof. Let h(x) = x/N , then h(N) = 1, h(0) = 0, and

∑
y∈S

p(x, y)h(y) =
∑
y∈S

(
N

y

)( x
N

)y (
1− x

N

)N−y
· y
N

=

N∑
y=1

N !

y!(N − y)!

( x
N

)y (
1− x

N

)N−y
· y
N

=
x

N

N∑
y=1

(N − 1)!

(y − 1)![(N − 1)− (y − 1)]!

( x
N

)y−1 (
1− x

N

)(N−1)−(y−1)

=
x

N

N−1∑
y=0

(
N − 1

y

)( x
N

)y (
1− x

N

)(N−1)−y

=
x

N
= h(x),

therefore by Theorem 3.26, Px(VN < V0) = x/N .

Theorem 3.28 (Exit time). Let C ⊆ S and g(x) = Ex(VC). Suppose S \ C is finite,

Px(VC <∞) > 0 for all x ∈ S \ C. Then g(x) = Ex(VC) is the only solution of the equation
g(x) = 1 +

∑
y∈S

p(x, y)g(y), ∀x ∈ S \ C;

g(x) = 0, ∀x ∈ C.

(1)

3.5 Recurrence and transience

Definition 3.29. 1. We call y ∈ S

• transient if ρyy < 1.

• recurrent if ρyy = 1 or equivalently Ty <∞ a.s.

• positive recurrent if Ey(Ty) <∞ (which implies Ty <∞ a.s. thus recurrent)

• null recurrent if it is recurrent but not positive recurrent

• absorbing if {y} is closed.

76



Notes Huarui Zhou Probability

2. Define N(y) is the number of returns to y in time n ≥ 1, i.e.

N(y) =

∞∑
n=1

1{Xn=y}.

Lemma 3.30. For any y ∈ S,

N(y) =

∞∑
n=1

1{Xn=y} =

∞∑
n=1

1{T k
y <∞}.

Corollary 3.31. For any x, y ∈ S,

Ex[N(y)] =

∞∑
n=1

pn(x, y) =

∞∑
n=1

ρxyρ
n−1
yy .

Lemma 3.32. Let y ∈ S, TFAE

1. y is recurrent

2. Py(Xn = y i.o.) = 1

3. Ey[N(y)] = ∞

Proof. 1 =⇒ 2. Since ρyy = 1, by Proposition 3.23, Py(T
k
y < ∞) = ρkyy = 1 for all k ∈ Z+.

therefore

Py(Xn = y i.o.) = Py(

∞⋂
k=1

{T k
y <∞}) = 1.

2 =⇒ 3. Py(Xn = y i.o.) = 1 implies Py(T
k
y <∞) = 1 for all k ∈ Z+, thus by Corollary 3.31,

Ey[N(y)] =

∞∑
k=1

Py(T
k
y <∞) = ∞.

3 =⇒ 1. Suppose ρyy < 1, then

Ey[N(y)] =

∞∑
k=1

Py(T
k
y <∞) =

∞∑
n=1

ρnyy =
ρyy

1− ρyy
<∞,
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leading to a contradiction!

Example 3.33. Figure 5 shows a 4-state Markov chain. We have

ρ11 = 1− P1(X1 = 2, X2 = 3) = 0.52, ρ22 = 1− P2(X1 = 3) = 0.2, ρ33 = ρ44 = 1,

thus state 1 and 2 are transient, state 3 and 4 are recurrent. Since

ρ12 = 1− P1(Xn = 1, ∀n ∈ Z+) = 1,

we have

E1[N(2)] =
ρ12

1− ρ22
=

1

1− 0.2
=

5

4

1 2

34

0.6

0.4

0.2
0.8

1

1

Figure 5: A 4-state Markov Chain

Proposition 3.34 (Recurrence is contagious). If x is recurrent and ρxy > 0, then y is

recurrent and ρyx = ρxy = 1.

Proof. 1.The case y = x is trivial. Suppose y 6= x. Since ρxy > 0, by Lemma 3.21, there

exists n ∈ Z+ s.t. pn(x, y) > 0. Let k = inf{n ∈ Z+ : pn(x, y) > 0}, also by Lemma 3.21,
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there exists a state sequence y1, y2, · · · , yk−1 s.t.

p(x, y1)p(y1, y2) · · · p(yk−1, y) > 0.

2.Define h : Ω → R,

h(ω) =


1 if ωk 6= x, ∀k ∈ Z+

0 else,

obviously, h = 1{Tx=∞}. By Markov property, we have

Ex(h(Xk, Xk+1, · · · )|Fk) = EXk
[h(X0, X1, · · · )],

then for A = {X1 = y1, · · · , Xk−1 = yk−1, Xk = y} ∈ Fk,

Ex(h(Xk, Xk+1, · · · )1A) = Ex[EXk
[h(X0, X1, · · · )]1A],

the LHS is

Ex[1{Tx=∞}1A] = Px[X1 = y1, · · · , Xk−1 = yk−1, Xk = y, Tx = ∞]

the RHS is

Ex[Ey[h(X0, X1, · · · )]1A] = Ey(h)Ex(1A) = Py(Tx = ∞)Px(X1 = y1, · · · , Xk−1 = yk−1, Xk = y).

79



Notes Huarui Zhou Probability

Therefore,

1− ρxx = Px(Tx = ∞)

≥ Px(X1 = y1, · · · , Xk−1 = yk−1, Xk = y, Tx = ∞)

= Py(Tx = ∞)Px(X1 = y1, · · · , Xk−1 = yk−1, Xk = y)

= (1− ρyx)p(x, y1)p(y1, y2) · · · p(yk−1, y),

thus ρxx = 1 implies ρyx = 1.

3. Since ρyx = 1 > 0, by Lemma 3.21, there is an l ∈ Z+ s.t. pl(y, x) > 0, then by Theorem

3.18,

pl+n+k(y, y) ≥ pl(y, x)pn(x, x)pk(x, y).

By Lemma 3.31, we have

Ey[N(y)] =

∞∑
n=1

pn(y, y) ≥
∞∑
n=1

pl+n+k(y, y) ≥ pl(y, x)pk(x, y)

∞∑
n=1

pn(x, x) = ∞,

however
∑∞

n=1 p
n(x, x) = Ex[N(x)] = ∞ by Proposition 3.32. Thus Ey[N(y)] = ∞, and by

Proposition 3.32 again, y is recurrent.

Definition 3.35 (communication). Suppose x, y ∈ S, x 6= y, we say x communicates with y

if ρxy > 0 and ρyx > 0, denoted as x↔ y. Define x always communicates with itself.

Definition 3.36. Let C ⊆ S be a non-empty set. We call C

• closed if x ∈ C and ρxy > 0 implies y ∈ C, or equivalently, x ∈ C, y /∈ C implies ρxy = 0.

• irreducible if x, y ∈ C implies x↔ y.

We call a Markov chain (or transition proposition p) to have some property (recurrent,

transient, irreducible, closed,...) if S has such property.

Lemma 3.37. For any x, y ∈ S, x 6= y, if x↔ y, then ρxx > 0.
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Proof. By Lemma 3.20,

ρxx ≥ ρxyρyx > 0.

Corollary 3.38. Let x ∈ S. If Cx = {y ∈ S : ρxy > 0, ρyx > 0} is not empty, then

Cx = {y ∈ S : y ↔ x}

Proposition 3.39. 1. ↔ is an equivalence relation.

2. S can be partitioned into equivalence classes of ↔.

3. Each equivalence class is irreducible.

Proposition 3.40. Any equivalence class C ⊆ S of ↔ is either recurrent or transient.

Proof. By Proposition 3.39, C is irreducible. If |C| = 1, there is only one state, so either

recurrent or transient. Now assume |C| ≥ 2. For any x ∈ C,

Case 1: x is recurrent. Then for any y ∈ C, ρxy > 0, by Proposition 3.34, y is also recurrent.

Thus all states are recurrent.

Case 2: x is transient. If there exists y ∈ C, y 6= x is recurrent, then by Case 1, x is also

recurrent, which is a contradiction. So all states are transient.

Remark. This shows recurrence and transience are class property, i.e. if one state in an

equivalence class is recurrent (or transient), then all states in such class are recurrent (or

transient).

Lemma 3.41. If C ⊆ S is closed, for any x ∈ C, we have

Px(Xn ∈ C) = 1,

i.e. ∑
y∈C

pn(x, y) = 1.
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Proposition 3.42. Suppose a non-empty set C ⊆ S is finite and closed.

1. C contains a recurrent state.

2. All recurrent states in C are positive recurrent.

3. If C is irreducible then all states in C are recurrent.

Proof. 1.Suppose no state in C is recurrent, i.e. for any y ∈ C, ρyy < 1, then by Proposition

3.32,

Ex[N(y)] =
ρxy

1− ρyy
<∞,

since C is finite, we have ∑
y∈C

Ex[N(y)] <∞.

However, by Fubini’s theorem and Lemma 3.41,

∑
y∈C

Ex[N(y)] =
∑
y∈C

∞∑
n=1

pn(x, y) =

∞∑
n=1

∑
y∈C

pn(x, y) =

∞∑
n=1

1 = ∞.

2.

3.If C only has one state, then by 1, it is recurrent. If C has more than one state, there

exists a recurrent statex ∈ C. For any y ∈ C and y 6= x, since X is irreducible, then ρxy > 0.

By Proposition 3.34, y is also recurrent.

Corollary 3.43. If an irreducible Markov chain has finite states, then it is recurrent.

Proof. Obviously, S is closed, thus this follows directly from Proposition 3.42.

Proposition 3.44. Suppose S is finite, x ∈ S.

1. If there is a y ∈ S, s.t. ρxy > 0 and ρyx = 0, then x is transient.

2. If any y ∈ S with ρxy > 0 also has ρyx > 0, then x is recurrent.
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Proof. 1. Suppose x is recurrent, since ρxy > 0, then by Proposition 3.34, we must have

ρyx = 1.

2. Cx = {y : ρxy > 0} = {y : x ↔ y}. Then Cx is the equivalence class containing x, thus

Cx is irreducible by Proposition 3.39. Cx is also closed. If Cx = S, it is obviously closed;

If Cx ⊊ S, let y ∈ Cx, z /∈ Cx with ρyz > 0, then by Lemma 3.20, ρxz ≥ ρxyρyz > 0, which

means z ∈ C. It is a contradiction, so ρyz = 0 and Cx is closed. By Proposition 3.42, Cx is

recurrent. Thus x ∈ Cx is recurrent.

Lemma 3.45. Suppose the equivalence class C ⊆ S is recurrent, then it is closed.

Proof. S is trivially closed, now suppose C ⊊ S. Let x ∈ C and y ∈ S \C, if ρxy > 0, then by

Proposition 3.34, ρyx > 0, thus x ↔ y, which implies y ∈ C, it is a contradiction. Therefore

ρxy = 0, i.e. C is closed.

Theorem 3.46 (Decomposition theorem). Let R be the set of all recurrent states. Then R

can be written as the disjoint union of Ri where each Ri is irreducible and closed.

Proof. By Proposition 3.39 and Lemma 3.45.

Proposition 3.47. Suppose p is irreducible and recurrent. µ is the initial distribution, then

for any y ∈ S,

Pµ(Ty <∞) = 1.

Proof. For any x ∈ S, by irreducibility, ρxy>0, then by Proposition 3.34, ρxy = 1. Therefore,

Pµ(Ty <∞) =
∑
x∈S

µ(x)Px(Ty <∞) =
∑
x∈S

µ(x) = 1.
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3.6 Recurrence of simple random walk

In this section, we consider the simple random walk on Zd. Define {Xi : i ≥ 0} are i.i.d. r.v.

with

P(Xi = ej) = P(Xi = −ej) =
1

2d
,

where ej is unit vectors on Zd. Let Sm =
∑m

i=1Xi, S0 = 0, obviously {Sm : m ≥ 0} is a

Markov chain on state space Z starting from 0.

Theorem 3.48 (Stirling’s formula).

n! ∼
√
2πn

(n
e

)n
.

Theorem 3.49. 0 is recurrent state for {Sm : m ≥ 0} in d ≤ 2 and transient in d ≥ 3.

Proof. Let pd(m) = P(Sm = 0), then pd(m) = 0 if m is odd. And by Lemma 3.32, 0 is

recurrent if
∑∞

m=1 pd(m) = ∞, and transient if
∑∞

m=1 pd(m) <∞.

1. d = 1. For 2n steps, S2n = 0 means there are n left steps and n right steps, so

p1(2n) =

(
2n

n

)
(
1

2
)n(

1

2
)n =

(2n)!

n!n!22n
∼ 1√

πn
,

thus
∞∑
n=1

p1(2n) ∼
∞∑
n=1

1√
πn

= ∞.

2. d = 2. Similarly, to make S2n = 0, there should be m up steps and m down steps, n−m

left steps and n−m right steps for some 0 ≤ m ≤ n. Then

p2(2n) =

n∑
m=0

(2n)!

m!m!(n−m)!(n−m)!
(
1

4
)m(

1

4
)m(

1

4
)n−m(

1

4
)n−m = [p1(2n)]

2 ∼ 1

πn
,
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so
∞∑
n=1

p1(2n) ∼
∞∑
n=1

1

πn
= ∞.

3. d = 3.

3.7 Periodicity

Definition 3.50. Let x ∈ S be a state.

1. Ix is the set of positive time n that makes pn(x, x) > 0, i.e.

Ix = {n ∈ Z+ : pn(x, x) > 0};

2. Let dx be the greatest common divisor of Ix (If Ix = ∅ i.e. p(x, x) = 0, we define

dx = 0). We call dx the period of x.

3. We call x is periodic if dx > 1, aperiodic if dx = 1.

4. We call the Markov chain aperiodic if all states are aperiodic.

Proposition 3.51 (period is a class property). Let x ∈ S with dx > 0, Cx is the equivalence

class containing x, i.e. Cx = {y ∈ S : y ↔ x}. Then every state in Cx has period dx.

Proof. The trivial case Cx = {x} is obvious. We can assume |Cx| ≥ 2. Then for any

y ∈ Cx \ {x}, ρxy > 0 and ρyx > 0. By Lemma 3.21, there exists L,M ∈ Z+, s.t. pL(x, y) > 0

and pM (y, x) > 0. Therefore, by Theorem 3.18,

pL+M (y, y) ≥ pM (y, x)pL(x, y) > 0,

which means dy |L+M . For any n ∈ Ix, pn(x, x) > 0, then

pL+n+M (y, y) ≥ pM (y, x)pn(x, x)pL(x, y) > 0,
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thus dy|L+ n+M . So dy|n for any n ∈ Ix, which implies dy|dx. By the same argument, we

can show dx|dy, thus dy = dx.

Corollary 3.52. Suppose p is irreducible, then

1. All states have the same period.

2. If p(x, x) > 0 for some state x (a self loop), then dx = 1, hence p is aperiodic.

Example 3.53. For the Markov chain in Figure 6, I1 = {4, 6, 8, 10, · · · }, so d1 = 2, the whole

chain has period 2.

1 2 3

456

1 0.5

0.5 1

11

1

Figure 6: A 6-state Markov Chain

For the Markov chain in Figure 7, I1 = {4, 5, 8, 9, 10, · · · }, so d1 = 1. The whole chain is

aperiodic.

1 2

345

1

0.50.5

11

1

Figure 7: A 5-state Markov Chain

Figure 8 shows an irreducible chain with period 2, but it is transient.
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1 2 3 41

0.2

0.8

0.2

0.8

0.2

…

Figure 8: An irreducible, periodic but transient chain

In Figure 7, notice that I1 = {4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, · · · }, i.e. pn(1, 1) > 0 for all

n ≥ 12, so we have the next result (Proposition 3.57), the following lemmas will be used to

prove it.

Lemma 3.54. If m,n ∈ Ix, then m+ n ∈ Ix and km ∈ Ix for any k ∈ Z+.

Proof. By Theorem 3.18.

Lemma 3.55. If A ⊆ Z+ is an infinite set, then there exists a finite subset A′ ⊆ A s.t.

gcd(A) = gcd(A′).

Lemma 3.56. Suppose A = {a1, a2, · · · , ak} ⊆ Z+, then there exists c1, · · · , ck ∈ Z s.t.

c1a1 + c2a1 + · · ·+ ckak = gcd(A).

Proposition 3.57. Suppose x ∈ S with dx = 1, then there exists mx ∈ Z+ s.t. m ∈ Ix for

all m ≥ mx.

Proof. 1. We only need to show there are two consecutive integers n and n+ 1 in Ix. Then

let mx = n(n − 1), for any m ≥ mx, m can be written as m = kn + r (divide m by n with

remainder r), where k ≥ n− 1, 0 ≤ r ≤ n− 1, then by Lemma 3.54,

m = kn+ r = (k − r)n+ r(n+ 1) ∈ Ix.

2. Since gcd(Ix) = 1, by Lemma 3.55 and 3.56, there exists integers i1, i2, · · · , ik ∈ Ix and
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c1, c2, · · · , ck ∈ Z, s.t.

c1i1 + c2i2 + · · ·+ ckik = dx = 1,

let aj = c+j = max{cj , 0}, bj = c−j = max{−cj , 0}6, then aj , bj ≥ 0 and cj = aj − bj, we have

a1i1 + · · ·+ akik = b1i1 + · · ·+ bkik + 1.

Let n = b1i1 + · · ·+ bkik ∈ Ix, then n+ 1 = a1i1 + · · ·+ akik is also in Ix.

Corollary 3.58. Suppose x ∈ S with dx ≥ 1, then there exists mx ∈ Z+ s.t. mdx ∈ Ix for

all m ≥ mx.

Remark. In Proposition 3.57, the problem of finding the minimal integer mx s.t. m ∈ Ix

for all m ≥ mx is called Frobenius problem.

Lemma 3.59. Suppose p is irreducible with d ≥ 2, if p(x, y) > 0 for some x, y ∈ S, then

pN (y, x) > 0 for some N = d− 1 (mod d) .

Theorem 3.60 (decomposition theorem). Suppose p is irreducible and has period d ≥ 1,

then S can be written as the disjoint union of subsets S0, S1, · · · , Sd−1 where for any x ∈ Si

p(x, y) > 0 =⇒ y ∈ Si+1mod d .

Moreover, this decomposition is unique up to the cyclic permutations.

Proof. Define relation ∼ on S: x ∼ y if pnd(x, y) > 0 for some n ∈ Z+.

Claim. ∼ is indeed an equivalence relation.

i) x ∼ x by Corollary 3.58;

ii) if x ∼ y, i.e. pnd(x, y) > 0 for some n ∈ Z+, then suppose pL(y, x) > 0 (by irreducibility),
6We can assume bj are not all zero, otherwise cj ≥ 0 for all j, then there must be some ij = 1 and cj = 1,

implying Ix = Z+, which is the trivial case. Thus b1i1 + · · ·+ bkik ∈ Ix.
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we have

pnd+L(x, x) ≥ pnd(x, y)pL(y, x) > 0,

then d |nd+ L, thus d |L, which means y ∼ x;

iii) Suppose x ∼ y, y ∼ z, i.e. pmd(x, y) > 0, pnd(y, z) > 0 for some m,n ∈ Z+, then

p(m+n)d(x, z) ≥ pmd(x, y)pnd(y, z) > 0,

thus x ∼ z.

Therefore, the equivalence relation ∼ determines a unique partition on S. For any x0 ∈ S,

let S0 = [x0], i.e. the equivalence class containing x0. If S0 = S (i.e. d = 1), we are done;

if S0 ⊊ S (i.e. d ≥ 2), then there must exist x1 ∈ S \ S0 s.t. p(x0, x1) > 0. Let S1 = [x1],

suppose p(y, z) > 0 for some y ∈ S0, z ∈ S, we want to show z ∈ S1. Since pmd(x0, y) > 0 for

some m and by Lemma 3.59, pnd−1(x1, x0) > 0 for some n, then

p(m+n)d(x1, z) ≥ pnd−1(x1, x0)p
md(x0, y)p(y, z) > 0,

so x1 ∼ z, z ∈ S1. Repeating this procedure, we can find all desired S2, · · · , Sn−1.

Remark. The above theorem actually shows such chain will visit Si one after the other.

Suppose x ∈ Si, then Px(Xn ∈ Sn+imod d ) = 1 for any n ∈ Z+.

3.8 Stationary Measures

Here we still consider the countable state space S.

Definition 3.61. Suppose µ : S → [0,+∞] is a measure on (S,S). Xn is a Markov chain on

S with transition probability p.
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1. Denote

µp(y) =
∑
x∈S

µ(x)p(x, y).

2. µ is called a stationary measure if it is σ-finite7 and for any y ∈ S,

µp(y) = µ(y).

3. µ is called a stationary distribution, if µ is a stationary measure and µ(S) = 1.

4. We say µ satisfies the detailed balanced condition or µ is reversible if for any x, y ∈ S

µ(x)p(x, y) = µ(y)p(y, x).

Proposition 3.62. µ ≡ 1 is a stationary measure if and only if for any y ∈ S,

∑
x∈S

p(x, y) = 1.

Proof. ∑
x∈S

p(x, y) =
∑
x∈S

µ(x)p(x, y) = µ(y) = 1.

Proposition 3.63. If a measure µ is reversible, then it is a stationary measure.

Proof. Suppose µ is reversible, then

µp(y) =
∑
x∈S

µ(x)p(x, y) =
∑
x∈S

µ(y)p(y, x) = µ(y)
∑
x∈S

p(y, x) = µ(y).

Proposition 3.64. Suppose µ is a stationary measure and X0 has “distribution” µ. Let

Ym = Xn−m, 0 ≤ m ≤ n is a Markov chain with initial “distribution” µ and transition
7This means for any x ∈ S, µ(x) := µ({x}) < ∞.
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probability

q(x, y) =
µ(y)p(y, x)

µ(x)
.

Furthermore, if µ is reversible, then q = p.

Theorem 3.65 (Kolmogorov’s cycle condition). Suppose S is irreducible w.r.t. transition

probability p. Then there exists a reversible measure if and only if the following two conditions

hold,

(i) p(x, y) > 0 implies p(y, x) > 0;

(ii) for any loop x0, x1, · · · , xn = x0, if

∏
1≤i≤n

p(xi, xi−1) > 0, (1)

then we have
n∏

i=1

p(xi−1, xi)

p(xi, xi−1)
= 1. (2)

Proof. =⇒:Suppose there is a reversible measure µ. Since S is irreducible, then for any

x, y ∈ S, ρxy = Px(Ty < ∞) > 0, thus µ(x) > 0 for any x ∈ S (otherwise Px ≡ 0). By the

definition of reversible measure,

µ(x)p(x, y) = µ(y)p(y, x),

therefore p(x, y) > 0 implies p(y, x) > 0. Next, suppose x0, x1, · · · , xn = x0 is a loop, and (1)

holds. Then by definition, for any i = 1, · · · , n,

µ(xi)p(xi, xi−1) = µ(xi−1)p(xi−1, xi)
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multiply them together, we get

n∏
i=1

µ(xi)p(xi, xi−1) =

n∏
i=1

µ(xi−1)p(xi−1, xi),

i.e.
n∏

i=1

µ(xi)

n∏
i=1

p(xi, xi−1) =

i−1∏
i=0

µ(xi)

n∏
i=1

p(xi−1, xi),

(2) is obtained since
∏n

i=1 µ(xi) =
∏n−1

i=0 µ(xi).

⇐=:Suppose the two conditions hold. Fix a ∈ S, since S is irreducible, for any x ∈ S, ρax > 0,

by Lemma 3.21, there exists a path x0 = a, x1, · · · , xn = x, s.t.
∏n

i=1 p(xi− 1, xi) > 0. Define

µ(x) =

n∏
i=1

p(xi−1, xi)

p(xi, xi−1)
.

First, µ is well-defined, i.e. µ(x) is independent of the path from a to x. Let x̃0 =

a, x̃1, · · · , x̃n = x be another path with
∏n

i=1 p(x̃i − 1, x̃i) > 0, then x0 = a, x1, · · · , xn =

x = x̃n, x̃n−1, · · · , x̃1, x̃0 = a is a loop, thus by (2), we have

1 =
p(x0, x1)

p(x1, x0)
· · · p(xn−1, xn)

p(xn, xn−1)
· p(x̃n, x̃n−1)

p(x̃n−1, x̃n)
· · · p(x̃1, x̃0)

p(x̃0, x̃1)
=

n∏
i=1

p(xi−1, xi)

p(xi, xi−1)

n∏
i=1

p(x̃i, x̃i−1)

p(x̃i−1, x̃i)
,

therefore
n∏

i=1

p(xi−1, xi)

p(xi, xi−1)
=

n∏
i=1

p(x̃i−1, x̃i)

p(x̃i, x̃i−1)
,

i.e. two different paths give the same µ(x) value.

Second, we will show µ is reversible, i.e. for any x, y ∈ S

µ(x)p(x, y) = µ(y)p(y, x). (3)

If p(x, y) = 0, by (2), p(y, x) = 0, then (3) holds. If p(x, y) > 0, by (2), p(y, x) > 0 and there

exists a path from a to y, i.e. x0 = a, x1, · · · , xn = x, xn+1 = y with
∏n+1

i=1 p(xi−1, xi) > 0,
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then

µ(y) =

n+1∏
i=1

p(xi−1, xi)

p(xi, xi−1)
=

[
n∏

i=1

p(xi−1, xi)

p(xi, xi−1)

]
· p(xn, xn+1)

p(xn+1, xn)
= µ(x) · p(x, y)

p(y, x)
,

thus (3) follows immediately.

Lemma 3.66. If p is transient, then a stationary distribution does not exist.

Proof. Suppose there is a stationary distribution π. By Lemma 3.31, p is transient implies

for any x, y ∈ S,
∞∑
n=1

pn(x, y) =

∞∑
n=1

ρxyρ
n−1
yy =

ρxy
1− ρyy

<∞,

thus as n→ ∞,

pn(x, y) → 0.

By the property of stationary distribution, for any y ∈ S,

π(y) = πpn(y) =
∑
x∈S

π(x)pn(x, y) → 0,

which contradicts that π is a distribution.

Theorem 3.67 (construction of stationary measure). Suppose x is a recurrent state, then

for any y ∈ S,

µx(y) = Ex

(
Tx−1∑
n=0

1{Xn=y}

)
=

∞∑
n=0

Px(Xn = y, Tx > n)

defines a stationary measure.

Proof. Our goal is to show for any z ∈ S,

µxp(z) = µx(z).
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First, we have

µxp(z) =
∑
y∈S

µx(y)p(y, z)

=
∑
y∈S

∞∑
n=0

Px(Xn = y, Tx > n)p(y, z)

=

∞∑
n=0

∑
y∈S

Px(Xn = y, Tx > n)p(y, z) (by Fubini’s theorem)

=

∞∑
n=0

∑
y∈S

Px(Xn = y, Tx > n,Xn+1 = z).

The last equality above holds because

p(Xn, z) = Px(Xn+1 = z|Fn) = Ex(1{Xn+1=z}|Fn),

then for A = {Xn = y, n < Tx} ∈ Fn, we have

Ex(1{Xn+1=z}1A) = Ex(p(Xn, z)1A),

LHS is Px({Xn+1 = z}∩A) = Px(Xn = y, Tx > n,Xn+1 = z), RHS is p(y, z)Px(A) = Px(Xn =

y, Tx > n)p(y, z).

Case 1. z 6= x.

Notice that Xn 6= x on Tx > n, i.e. {Xn = x, Tx > n} = ∅, then

⊔
y∈S

{Xn = y, Tx > n,Xn+1 = z} = {Xn ∈ S \ {x}, Tx > n,Xn+1 = z}

= {Xn+1 = z, Tx > n+ 1},
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therefore,

µxp(z) =

∞∑
n=0

∑
y∈S

Px(Xn = y, Tx > n,Xn+1 = z)

=

∞∑
n=0

Px

⊔
y∈S

{Xn = y, Tx > n,Xn+1 = z}


=

∞∑
n=0

Px(Xn+1 = z, Tx > n+ 1)

=

∞∑
n=1

Px(Xn = z, Tx > n)

=

∞∑
n=0

Px(Xn = z, Tx > n) (since Px(X0 = z, Tx > 0) = 0)

= µx(z).

Case 2. z = x.

In this case,

⊔
y∈S

{Xn = y, Tx > n,Xn+1 = x} = {Xn ∈ S \ {x}, Tx > n,Xn+1 = x} = {Tx = n+ 1},

thus

µxp(x) =

∞∑
n=0

∑
y∈S

Px(Xn = y, Tx > n,Xn+1 = x)

=

∞∑
n=0

Px(Tx = n+ 1)

= Px(Tx <∞)

= ρxx = 1. (since x is recurrent)
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On the other hand, {Xn = n, Tx > n} = ∅ for n ≥ 1, so

µx(x) =

∞∑
n=0

Px(Xn = x, Tx > n) = Px(X0 = x, Tx > n) = 1,

hence µxp(x) = µx(x).

Remark. 1. If x is transient, Case 1 still holds, but Case 2 will be different, because

µxp(x) = ρxx < 1 = µx(x).

2. µx is σ-finite, i.e. for any y ∈ S, µx(y) <∞.

If y = x, clearly, µx(x) = 1 < ∞. Suppose y 6= x. If ρxy = 0, since {Xn = y, Tx > n} ⊆

{Xn = y} ⊆ {Ty <∞}, thus

µx(y) =

∞∑
n=0

Px(Xn = y, Tx > n) ≤
∞∑
n=0

Px(Ty <∞) = 0.

If ρxy > 0, since x is recurrent, by Proposition 3.34, y is also recurrent, and ρyx = 1 > 0,

by Lemma 3.21, pn(y, x) > 0 for some n ≥ 1. By the property of stationary measure,

we have

1 = µx(x) = µxp
n(x) =

∑
z∈S

µx(z)p
n(z, x) ≥ µx(y)p

n(y, x),

thus

µx(y) ≤
1

pn(y, x)
<∞.
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3. We have

µx(S) =
∑
y∈S

µx(y)

=
∑
y∈S

∞∑
n=0

Px(Xn = y, Tx > n)

=

∞∑
n=0

∑
y∈S

Px(Xn = y, Tx > n)

=

∞∑
n=0

Px(Tx > n)

= Ex(Tx), (tail sum formula)

thus if Ex(Tx) <∞ (positive recurrent),

π :=
µx

Ex(Tx)

is a stationary distribution.

Theorem 3.68. If p is irreducible and recurrent, then the stationary measure is unique up

to constant multiples.

97



Notes Huarui Zhou Probability

Proof. Suppose ν is a stationary measure, let a ∈ S, then for any z ∈ S,

ν(z) =
∑
y∈S

ν(y)p(y, z)

= ν(a)p(a, z) +
∑
y∈S
y ̸=a

ν(y)p(y, z)

= ν(a)p(a, z) +
∑
y∈S
y ̸=a

[∑
x∈S

ν(x)p(x, y)

]
p(y, z)

= ν(a)p(a, z) +
∑
y∈S
y ̸=a

ν(a)p(a, y) +∑
x∈S
x ̸=a

ν(x)p(x, y)

 p(y, z)
= ν(a)p(a, z) +

∑
y∈S
y ̸=a

ν(a)p(a, y)p(y, z) +
∑
y∈S
y ̸=a

∑
x∈S
y ̸=a

ν(x)p(x, y)p(y, z)

= ν(a)Pa(X1 = z) + ν(a)Pa(X1 6= a,X2 = z) + Pν(X0 6= a,X1 6= a,X2 = z)

...

= ν(a)

n∑
m=1

Pa(Xk 6= a, 1 ≤ k < m,Xm = z) + Pν(Xk 6= a, 0 ≤ k < n,Xn = z)

= ν(a)

n∑
m=0

Pa(Ta > m,Xm = z) + Pν(Xk 6= a, 0 ≤ k < n,Xn = z)

≥ ν(a)

n∑
m=0

Pa(Ta > m,Xm = z)

(it holds for both z = a and z 6= a) let n→ ∞, we have

ν(z) ≥ ν(a)µa(z),

where µa is the stationary measure defined by Theorem 3.67. Next, we will prove it is actually

an equality. Since p is irreducible, we have ρza > 0, thus by Lemma 3.21, pn(z, a) > 0 for

98



Notes Huarui Zhou Probability

some n ∈ Z+. Notice that

ν(a) =
∑
x∈S

ν(x)pn(x, a) ≥ ν(a)
∑
x

µa(x)p
n(x, a) = ν(a)µa(a) = ν(a),

where we apply µa(a) = 1 from Theorem 3.67. Therefore

∑
x∈S

[ν(x)− ν(a)µa(x)]p
n(x, a) = 0,

where [ν(x)− ν(a)µa(x)]p
n(x, a) ≥ 0, thus

[ν(x)− ν(a)µa(x)]p
n(x, a) = 0, ∀x ∈ S.

When x = z, since pn(z, a) > 0, it follows ν(z) − ν(a)µa(z) = 0 i.e. ν(z) = ν(a)µa(z).

Moreover, by the σ-finiteness of ν, we have ν(a) <∞.

Now we have proved the existence (Theorem 3.67) and uniqueness (Theorem 3.68) of

stationary measures.

Corollary 3.69. If p is irreducible and recurrent, and there is a positive recurrent state

x ∈ S, then there is a unique stationary distribution, which is

π =
µx

Ex(Tx)
.

Proof. By the Remark 3 of Theorem 3.67, we can define a stationary distribution by

π =
µx

Ex(Tx)
.

By Theorem 3.68, such stationary distribution is unique.

Lemma 3.70. If there is a stationary distribution π, then any state y with π(y) > 0 is

recurrent.
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Proof. For any n ≥ 1, we have

πpn = π,

then for any y ∈ S, by Fubini’s theorem and π(y) > 0,

∑
x∈S

π(x)

∞∑
n=1

pn(x, y) =

∞∑
n=1

∑
x∈S

π(x)pn(x, y) =

∞∑
n=1

π(y) = ∞.

By Lemma 3.31,
∞∑
n=1

pn(x, y) =

∞∑
n=1

ρxyρ
n−1
yy ,

thus

∞ =
∑
x∈S

π(x)

∞∑
n=1

pn(x, y) =
∑
x∈S

π(x)

∞∑
n=1

ρxyρ
n−1
yy =

∞∑
n=1

ρn−1
yy

∑
x∈S

π(x)ρxy ≤
∞∑
n=1

ρn−1
yy ,

which implies ρyy = 1, i.e. y is recurrent.

Proposition 3.71. If p is irreducible and there is a stationary distribution π, then

1. π(x) > 0 for any x ∈ S;

2. p is recurrent;

3. π is the unique stationary distribution;

4. p is positive recurrent;

5. for any x ∈ S,

π(x) =
1

Ex(Tx)
.

Proof. 1.Suppose there exists an x ∈ S s.t. π(x) = 0. There must be some y ∈ S s.t.

π(y) > 0, otherwise π fails to be a distribution. Since p is irreducible, ρyx > 0, by Lemma
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3.21, pn(y, x) > 0 for some n ∈ Z+. But

0 = π(x) =
∑
y∈S

π(y)pn(y, x),

and π(y) > 0, suggesting pn(y, x) = 0.

2. By Proposition 3.70, all states are recurrent.

3. By Theorem 3.68.

4. By Theorem 3.67, for any x ∈ S, µx is a stationary measure. And by Theorem 3.68,

µx = cπ for some c <∞, thus by Remark 3 in Theorem 3.67,

Ex(Tx) = µx(S) = cπ(S) = c <∞,

i.e. all states are positive recurrent.

5. By Corollary 3.69, for any x ∈ S,

π =
µx

Ex(Tx)

is a stationary distribution, and sicne µx(x) = 1, we have

π(x) =
µx(x)

Ex(Tx)
=

1

Ex(Tx)
.

Proposition 3.72. Suppose S is irreducible, then TFAE,

1. Some x is positive recurrent;

2. There exists a stationary distribution;

3. p is positive recurrent.
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Proof. 1 =⇒ 2: Suppose x is positive recurrent, then by Theorem 3.67

π =
µx

Ex(Tx)

defines a stationary distribution.

2 =⇒ 3: By Proposition 3.71.

3 =⇒ 1: trivial.
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3.9 Asymptotic behavior

In this section, we will consider the asymptotic behavior of pn(x, y).

Proposition 3.73. If y ∈ S is transient, then pn(x, y) → 0 as n→ ∞.

Proof. By Lemma 3.31, y is transient implies for any x ∈ S,

∞∑
n=1

pn(x, y) =

∞∑
n=1

ρxyρ
n−1
yy =

ρxy
1− ρyy

<∞,

thus as n→ ∞,

pn(x, y) → 0.

How about the case when y is recurrent?

Definition 3.74. For any y ∈ S, n ∈ Z+, let Nn(y) be the number of visits to y by time n,

i.e.

Nn(y) =

n∑
m=1

1{Xm=y}.

Lemma 3.75. Suppose y is recurrent and for any k ≥ 0, let Rk = T k
y be the time of the k-th

return to y. For k ≥ 1, let rk = Rk −Rk−1 be the k-th interarrival time. Then under Py, the

vectors vk = (rk, XRk−1
, · · · , XRk−1), k ≥ 1 are i.i.d.

Proof. Let’s make some examples first, if R1 = 5, R2 = 8, R3 = 10, then v1 = (5, X0, · · · , X4),

v2 = (3, X5, X6, X7), v3 = (2, X8, X9). So we observe that v2(X0, X1, X3, · · · ) = v1(X5, X6, X7, · · · ),

in general,

vk = v1 ◦ θRk−1
.

i)First, vk and v1 have the same distribution.
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Let X = (X0, X1, · · · ), X ′ = X ◦ θRk−1
= (XRk−1

, XRk−1+1, · · · ), then for any A ∈ F ,

Py(X
′ ∈ A) = Ey(1{X∈A} ◦ θRk−1

)

= Ey[Ey(1{X∈A} ◦ θRk−1
|FRk−1

)]

= Ey[EXRk−1
(1{X∈A})] (Rk−1 <∞ a.s. and strong Markov pproperty)

= Py(X ∈ A),

thus X and X ′ has the same distribution, then vk = v1(X
′) and v1 = v1(X) has the same

distribution.

ii)Second σ(vk) is independent of FRk−1
.

Claim. For any {X ∈ A} ∈ σ(X), if P(X ∈ A|F) = P(X ∈ A), then σ(X) and F are

independent.

Proof. For any B ∈ F , by the definition of conditional expectation, we have

P({X ∈ A} ∩ B) = E(1{X∈A}1B) = E(P(X ∈ A)1B) = P(X ∈ A)P(B),

thus σ(X) and F are independent.

Let {vk ∈ V } ∈ σ(vk), by the strong Markov property, we have

Py(vk ∈ V |FRk−1
) = Ey(1{v1∈V } ◦ θRk−1

|FRk−1
) = EXRk−1

(1{v1∈V }) = Py(v1 ∈ V ) = Py(vk ∈ V ).

Therefore, by the above claim, σ(vk) is independent of FRk−1
⊇ σ(v1), · · · , σ(vk−1), so vk is

independent of v1, · · · , vk−1 and also has the same distribution as them. By induction, vk,

k ≥ 1 are all i.i.d.
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Theorem 3.76. Suppose y is recurrent. Then for any x ∈ S,

Nn(y)

n
→ 1

Ey(Ty)
1{Ty<∞} Px-a.s.

as n→ ∞.

Proof. Case 1. Suppose the chain initiates at y. Let rk = T k
y − T k−1

y , then by Lemma 3.75,

rk, k ≥ 1 are i.i.d. and Ey(rk) = Ey(r1) = Ey(Ty) (< ∞ or = ∞). Therefore, by the strong

law of large number, ∑n
k=1 rk
n

=
Tn
y

n
→ Ey(Ty) Py-a.s. (1)

Since TNn(y)
y ≤ n < T

Nn(y)+1
y (where TNn(y)

y means the time of the last return to y by time n,

T
Nn(y)+1
y means the time of the first return to y after time n),

T
Nn(y)
y

Nn(y)
≤ n

Nn(y)
<

T
Nn(y)+1
y

Nn(y) + 1
· Nn(y) + 1

Nn(y)
. (2)

By Proposition 3.32, y recurrent implies Ey[N(y)] = ∞, then N(y) = limn→∞Nn(y) = ∞ a.s.

Let n → ∞ in (2), by equation (1), squeeze theorem of limit and subsequence convergence,

we have
n

Nn(y)
→ Ey(Ty) Py-a.s.

Case 2. Suppose the chain initiates at x and x 6= y. Since ρxy may not be 1, we need to

consider both {Ty = ∞} and {Ty <∞}. On {Ty = ∞}, Nn(y) = 0, for all n ∈ Z+, then

Nn(y)

n
→ 0.

On {Ty < ∞}, by the same argument in Lemma 3.75, rk, k ≥ 2 are i.i.d, and for k ≥ 2,
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Px(rk = n) = Py(Ty = n), thus Ex(rk) = Ey(Ty), then by the strong law of large number,

Tn
y

n
=
Ty
n

+

∑n
k=2 rk
n

→ 0 + Ex(rk) = Ey(Ty) Px-a.s.

Repeating what we did in Case 1, we have

Nn(y)

n
→ 1

Ey(Ty)
Px-a.s.

Therefore in Case 2, we have

Nn(y)

n
→ 1

Ey(Ty)
1{Ty<∞} Px-a.s.

Remark. 1. This theorem provides an interpretation of positive recurrent and null recur-

rent. If y is positive recurrent, then the asymptotic frequency of visits at y is positive;

if y is null recurrent, then it is 0.

2. Since Nn(y)
n ∈ [0, 1], by bounded convergence theorem,

Ex[
Nn(y)

n
] → Ex[

1

Ey(Ty)
1{Ty<∞}],

i.e.
Ex(Nn(y))

n
→

Px(Ty <∞)

Ey(Ty)
=

ρxy
Ey(Ty)

.

Notice that

Ex(Nn(y)) = Ex[

n∑
m=1

1{Xm=y}] =

n∑
m=1

Px(Xm = y) =

n∑
m=1

pm(x, y),

therefore
1

n

n∑
m=1

pm(x, y) →
ρxy

Ey(Ty)
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as n → ∞. This means pn(x, y) converges in the Cesaro sense if y is recurrent (Ce-

saro convergence is also true for transient state, because convergence implies Cesaro

convergence).

Corollary 3.77. Suppose p is irreducible. If p is transient or null-recurrent, then for any

x, y ∈ S,
1

n

n∑
m=1

pm(x, y) → 0,

as n→ ∞. If p is positive-recurrent, then for any x, y ∈ S,

1

n

n∑
m=1

pm(x, y) → π(y),

as n→ ∞, where π is the stationary distribution of p.

Theorem 3.78 (Convergence theorem). Suppose Markov chain Xn has transition probability

p and initial distribution µ. If p is irreducible, aperiodic, and has a stationary distribution

π, then for all y ∈ S,

Pµ(Xn = y) → π(y),

as n→ ∞. In particular, for all x, y ∈ S,

Px(Xn = y) = pn(x, y) → π(y)

as n→ ∞.

Proof. We will use a technique called coupling. Let Yn be a Markov chain with transition

probability p and initial distribution π, and independent with Xn. Consider Zn = (Xn, Yn).

1. Zn is a Markov chain on S2 = S × S with transition probability p̄ and initial distribution

λ, where

p̄((x1, y2), (x2, y2)) = p(x1, x2)p(y1, y2), ∀x1, x2, y1, y2 ∈ S,
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and

λ(x, y) = µ(x)π(y).

2. p̄ is irreducible.

Since p is irreducible, there exists K and L, s.t. pK(x1, x2) > 0 and pL(y1, y2) > 0. And by

Proposition 3.57, there exists m(x2),m(y2) ∈ Z+ s.t. for any m ≥ m(x2) and n ≥ m(y2),

pm(x2, x2) > 0, pn(y2, y2) > 0.

Let M = max{0,m(x2)−K,m(y2)− L}, then

pK+L+M (x1, x2) ≥ pL(x1, x2)p
K+M (x2, x2) > 0, pK+L+M (y1, y2) ≥ pK(y1, y2)p

L+M (y2, y2) > 0,

thus

p̄K+L+M ((x1, y2), (x2, y2)) = pK+L+M (x1, x2)p
K+L+M (y1, y2) > 0,

as desired.

3. π̄ defined by π̄(a, b) = π(a)π(b) is a stationary distribution for p̄.

This is because for any (x1, y1) ∈ S2,

π̄p(x1, y1) =
∑

(x,y)∈S2

π̄(x, y)p((x, y), (x1, y1))

=
∑

(x,y)∈S2

π(x)π(y)p(x, x1)p(y, y1)

= π(x1)π(y1)

= π̄(x1, y1),

and
∑

(x,y)∈S2 π̄(x, y) = 1.

4. Since p̄ is irreducible and has a stationary distribution, by Proposition 3.71, p̄ is positive

recurrent.
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5. For any x ∈ S, define T = inf{n ≥ 1 : Xn = Yn}, Tx = inf{n ≥ 1 : Xn = Yn = x}.

Since p̄ is irreducible and recurrent, by Proposition 3.47, Pλ(Tx < ∞) = 1. Then we have

Pλ(T <∞) = 1 because {Tx <∞} ⊆ {T <∞}.

6. On {T ≤ n} (after hitting the diagonal), Xn and Yn have the same distribution.

Since {T ≤ n} =
⊔n

m=1{T = m}, for any y ∈ S,

Pλ(Xn = y, T ≤ n) =

n∑
m=1

Pλ(Xn = y, T = m)

=

n∑
m=1

∑
x∈S

Pλ(Xn = y, T = m,Xm = x)

=

n∑
m=1

∑
x∈S

Pλ(T = m,Xm = x)Pλ(Xn = y|Xm = x, T = m)

=

n∑
m=1

∑
x∈S

Pλ(T = m,Ym = x)pn−m(x, y)

=

n∑
m=1

∑
x∈S

Pλ(T = m,Ym = x)Pλ(Yn = y|Ym = x, T = m)

= Pλ(Yn = y, T ≤ n).

7. Notice that

Pλ(Xn = y) = Pλ(Xn = y, T ≤ n) + Pλ(Xn = y, T > n)

= Pλ(Yn = y, T ≤ n) + Pλ(Xn = y, T > n)

≤ Pλ(Yn = y) + Pλ(Xn = y, T > n),

and similarly,

Pλ(Yn = y) ≤ Pλ(Xn = y) + Pλ(Yn = y, T > n).

So Pλ(Xn = y) − Pλ(Yn = y) ≤ Pλ(Xn = y, T > n) and Pλ(Yn = y) − Pλ(Xn = y) ≤ Pλ(Yn =
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y, T > n),

|Pµ(Xn = y)− π(y)| = |Pλ(Xn = y)− Pλ(Yn = y)|

≤ max{Pλ(Xn = y, T > n),Pλ(Yn = y, T > n)}

≤ Pλ(Xn = y, T > n) + Pλ(Yn = y, T > n)

≤ 2Pλ(T > n) → 0,

because T <∞ a.s. Therefore

lim
n→∞

Pµ(Xn = y) = π(y).

For the version of null-recurrent, we have the following theorem.

Theorem 3.79. Suppose p is irreducible, aperiodic, and null-recurrence, then for any y ∈ S,

Pµ(Xn = y) → 0

as n→ ∞.
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4 Branching process

4.1 Model description and basic properties

Galton-Watson tree or Branching process is a sequence of r.v. {Zn : n ≥ 0} with Z0 = 1 and

for n ≥ 1

Zn =


Zn−1∑
i=1

ξ
(n)
i Zn−1 6= 0

0 Zn−1 = 0

where ξ(m)
i : Ω → N for all m, i are i.i.d ∼ ξ. In other word, {Zn : n ≥ 1} can be viewed

as a family starting from one ancestor (Z0). Everyone can generate children following the

distribution of ξ. And Zn is the total number of people in the n-th generation.

Let pk = P(ξ = k), k ∈ N be the probability that a person generates k children. Then∑
k pk = 1. Denote µ = E(ξ). To avoid the trivial case, we always assume p0 > 0 and

p0 + p1 < 1.

Lemma 4.1. {Zn : n ≥ 0} is a Markov chain on S = N with transition probability

p(i, j) = P(
i∑

m=1

ξm = j).

Proposition 4.2. All states k ≥ 1 are transient. State 0 is recurrent and absorbing.

Proof. First we have

ρk,0 = Pk(T0 <∞) ≥ p(k, 0) = [P(ξ = 0)]k > 0,

and ρ0,k = 0. If k is recurrent, then by Proposition 3.34, ρ0,k = 1 which leads to a contradic-

tion, thus state k ≥ 1 is transient. Second, ρ0,0 = 1, so 0 is recurrent by definition. Moreover,

x is also an absorbing state since ρ0,k = 0 for any k ≥ 1.
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Lemma 4.3. Let Fn = σ(ξ
(m)
i , i ≥ 1, 1 ≤ m ≤ n), µ ∈ (0,+∞), then {Wn = Zn/µ

n : n ≥ 0}

is a non-negative martingale w.r.t. {Fn}.

Proof. Wn ∈ Fn. And Since Zn+1 = Zn+11⊔∞
k=1{Zn=k} = Zn+1

∑∞
k=1 1{Zn=k}, we have

E(Zn+1|Fn) =

∞∑
k=1

E(Zn+11{Zn=k}|Fn)

=

∞∑
k=1

E[(ξ(n+1)
1 + ξ

(n+1)
2 + · · ·+ ξ

(n+1)
k )1{Zn=k}|Fn]

=

∞∑
k=1

1{Zn=k}E(ξ
(n+1)
1 + ξ

(n+1)
2 + · · ·+ ξ

(n+1)
k )

=

∞∑
k=1

1{Zn=k}kµ

= µZn,

thus

E(Wn+1|Fn) = E(Zn+1

µn+1
|Fn) =

Zn

µn
= Wn.

Corollary 4.4. Wn → W∞ a.s. and E(W∞) ≤ 1.

Proof. Direct from Corollary 2.15.

4.2 Generating function

Definition 4.5. Define generating function φ : [0, 1] → R by

φ(s) = E(sξ) =
∞∑
k=0

pks
k.

Lemma 4.6. The generating function φ has the following properties:

1. φ(0) = p0, φ(1) = 1

2. φ′(0) = p1, φ′(1) = µ
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3. φ′(s) > 0 for all s ∈ (0, 1), i.e. φ is strictly increasing on (0, 1).

4. φ′′(s) ≥ 0 for all s ∈ (0, 1), i.e. φ is convex on (0, 1).

Proof. 1. φ(0) = p0 is obvious,

φ(1) =

∞∑
k=0

pk = 1.

2. Since φ(s) is absolutely convergent on [0, 1], We have

φ′(s) =

∞∑
k=0

(pks
k)′ =

∞∑
k=1

kpks
k−1 = p1 + 2p2s+ 3p3s

2 + · · · ,

thus φ′(0) = p1, φ′(1) =
∑∞

k=1 kpk = E(ξ) = µ.

3. By assumption, p1 > 0, so φ′(s) ≥ p1 > 0 on (0, 1).

4. Since

φ′′(s) =

∞∑
k=2

k(k − 1)pks
k−2 = 2p2 + 6p3s+ · · · ≥ 0.

Proposition 4.7. Suppose p is the transition probability, then

φ(s) =

∞∑
k=0

p(1, k)sk, [φ(s)]j =

∞∑
k=0

p(j, k)sk.

Proof. The first equality is the definition of φ(s). For the second one, consider the expansion

of

[φ(s)]j =

[ ∞∑
k=0

p(1, k)sk

]j
,

the coefficient of sn equals

∑
k1,k2,··· ,kj

k1+k2+···+kj=n

j∏
i=1

p(1, ki) = P(ξ1 + ξ2 + · · ·+ ξj = n) = p(j, n).
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Proposition 4.8. Let φ(n)(s) = E(sZn) =
∑

k p
n(1, k)sk, where pn(1, k) is the n-step tran-

sition probability. Let φn be the n-th iteration of φ, i.e. φn+1(s) = φ(φn(s)) for all n ≥ 1.

Then

1. φ(n)(s) = φn(s)

2. For any j ≥ 0,

[φn(s)]j =

∞∑
k=0

pn(j, k)sk.

3. pn(j, 0) = [φn(0)]j.

Proof. 1. On {Zn−1 = k}, we have

E(sZn1{Zn−1=k}|Fn−1) = E(
k∏

i=1

sξi1{Zn−1=k}|Fn−1) =

k∏
i=1

E(sξi)1{Zn−1=k} = [φ(s)]k1{Zn−1=k},

take expectation, we have

E(sZn) = E[[φ(s)]Zn−1 ],

since E(sZ1) = φ(s), E(sZ2) = E[[φ(s)]Z1 ] = φ(φ(s)), we finish the proof by induction.

2. See proof in Proposition 4.7.

3. Let s = 0 in 2).

4.3 Moments

Let µ = E(ξ), σ2 = Var(ξ2).

Proposition 4.9. E(Zn) = µn.

Proof. Since Wn = Zn/µ
n is a martingale,

1 = E(W1) = E(Wn) =
E(Zn)

µn
.
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Proposition 4.10.

Var(Zn) =


σ2µn−1(µn − 1)

µ− 1
if µ 6= 1

nσ2 if µ = 1

Proof. Observe that

[φn(s)]′ =

∞∑
k=1

kpn(1, k)sk−1, [φn(s)]′′ =

∞∑
k=2

k(k − 1)pn(1, k)sk−2,

so

E(Z2
n) =

∞∑
k=0

k2pn(1, k) = [φn(1)]′ + [φn(1)]′′.

[φn(1)]′ =
∑∞

k=1 kp
n(1, k) = E(Zn) = µn. For [φn(1)]′′, we note that

[φn(s)]′′ = [φ(φn−1(s))]′′

= [φ′(φn−1(s))[φn−1(s)]′]′

= φ′′(φn−1(s)) · [[φn−1(s)]′]2 + φ′(φn−1(s)) · [φn−1(s)]′′

,

let s = 1, since φn(1) = 1, φ′(1) = µ, φ′′(1) = E(ξ2)− φ′(1) = σ2 + µ2 − µ, we have

[φn(1)]′′ = φ′′(1) · [[φn−1(1)]′]2 + φ′(1) · [φn−1(1)]′′ = (σ2 + µ2 − µ)µ2n−2 + µ[φn−1(1)]′′.

By induction, we have

[φn(1)]′′ = (σ2 + µ2 − µ)(µ2n−2 + µ2n−3 + · · ·+ µn−1),
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therefore

Var(Zn) = E(Z2
n)− [E(Zn)]

2

= µn + (σ2 + µ2 − µ)(µ2n−2 + µ2n−3 + · · ·+ µn−1)− µ2n

= σ2µn−1(1 + µ+ µ2 + · · ·+ µn−1) + µn(µ− 1)(1 + µ+ · · ·+ µn−1) + µn − µ2n

= σ2µn−1(1 + µ+ µ2 + · · ·+ µn−1)

=


σ2µn−1(µn − 1)

µ− 1
if µ 6= 1

nσ2 if µ = 1

Corollary 4.11.

Var(Wn) =
Var(Zn)

µ2n
=


σ2(µn − 1)

µn+1(µ− 1)
if µ 6= 1

nσ2

µ2n
if µ = 1

Proposition 4.12. If µ > 1, σ2 <∞, then

1. Wn → W∞ in L2 and L1

2. E(W∞) = 1,

E(W 2
∞) = 1 +

σ2

µ(µ− 1)
.

Proof. By Corollary 4.11, for all n ≥ 0,

E(W 2
n) = Var(Wn) + [E(Wn)]

2 =
σ2(µn − 1)

µn+1(µ− 1)
+ 1 =

σ2(1− 1

µn
)

µ(µ− 1)
+ 1 <

σ2

µ(µ− 1)
+ 1 <∞,

thus supn E(W 2
n) <∞, by Theorem 2.25, Wn → W∞ in L2 hence also in L1. Then

E(W∞) = lim
n→∞

E(Wn) = 1, E(W 2
∞) = lim

n→∞
E(W 2

n) =
σ2

µ(µ− 1)
+ 1.
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4.4 Extinction probability

Definition 4.13. We say the population goes extinct if Zn → 0, denoted as Z∞ = 0. We

say the population does not go extinct if Zn 6→ 0, denoted as Z∞ > 0. (Zn may not have a

limit in case of non-extinction, here Z∞ is just a notation).

Lemma 4.14. For any ω ∈ Ω, Zn(ω) goes extinct if and only if Zn(ω) = 0 for some n.

Proposition 4.15. If µ < 1, then Z∞ = 0 a.s. Hence W∞ = 0 a.s.

Proof. Since Zn takes integers, {Zn ≥ 1} = {Zn > 0}, therefore when µ < 1,

P(Zn > 0) = E(1{Zn>0}) ≤ E(Zn1{Zn>0}) ≤ E(Zn) = µn → 0,

which implies Zn → 0 in probability. Since

∞∑
n=1

P(Zn > 0) ≤
∞∑
n=1

µn =
µ

1− µ
<∞,

by Borel-Cantelli lemma, P(Zn > 0, i.o.) = 0, thus Zn → 0 a.s.

Proposition 4.16. If µ = 1, then Z∞ = 0 a.s.

Proof. When µ = 1, Wn = Zn → Z∞ a.s. and Z∞ < ∞ a.s. For any k > 0, since k is

transient, by Proposition 3.73,

P(Z∞ = k) = lim
n→∞

P(Zn = k) = lim
n→∞

pn(1, k) = 0.

Combining Z∞ <∞ a.s., we conclude that Z∞ = 0 a.s. Another way to illustrate: if Z∞ = k

for some k > 0 if and only if there exists N > 0 s.t. Zn = k for all n ≥ N . However, since

p(k, k) ≤ 1− p(k, 0) = 1− pk0 < 1,

P(Zn = k for all n ≥ N) = lim
n→∞

[p(k, k)]n = 0,
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so w.p.1., Z∞ 6= k, for any k > 0.

Lemma 4.17. P(Z∞ = 0) = limn→∞ P(Zn = 0) = limn→∞ φn(0).

Proof. Since {Zn = 0} ↑ {Z∞ = 0}, we obtain the result by the continuity of probability.

Lemma 4.18. Let ρ = inf{s ∈ (0, 1] : φ(s) = s}, then limn→∞ φn(0) = ρ.

Proof. Let θn = φn(0), then θ1 = φ(0) = p0 > 0. First, we have θn is an increasing sequence,

because φ is strictly increasing, then θ2 = φ(θ1) > φ(0) = θ1, θ3 = φ(θ2) > φ(θ1) = θ2 and so

on. Second, θn ≤ ρ for all n, because 0 < ρ, then θ1 = φ(0) < φ(ρ) = ρ, θ2 = φ(θ1) < φ(ρ) = ρ

and so on. By monotone convergence theorem, there is a limit for θn, denoted as θ∞. Take

limit on both side of θn+1 = φ(θn), we have θ∞ = φ(θ∞), since θ∞ ≤ ρ, θ∞ cannot be other

solution of φ(s) = s that is larger than ρ, therefore θ∞ = ρ.

Proposition 4.19. If 0 < µ ≤ 1, then 1 is the only solution for φ(s) = s on [0, 1]. Hence

P(Z∞ = 0) = 1.

Proposition 4.20. If µ > 1, there is a unique ρ ∈ (0, 1) s.t. φ(ρ) = ρ. Moreover, P(Z∞ =

0) = ρ.

Proof. 1.Since φ is increasing and φ′(1) = µ > 1, there must be h ∈ (0, 1) s.t. φ(h) < h. And

φ(0) = p0 > 0, so there exists ρ ∈ (0, h) s.t. φ(ρ) = ρ.

2. Since µ = E(ξ) > 1, then pk > 0 for some k ≥ 2, otherwise µ = p1 < 1. So φ′′(s) > 0 on

(0, 1), i.e. strictly convex.

3. Let ρ = inf{s ∈ (0, 1) : φ(s) = s}, then by the property of strictly convex function, for any

s ∈ (ρ, 1), we have s = λρ+ (1− λ) · 1 where λ = (1− s)/(1− ρ) ∈ (0, 1) and

φ(s) = φ(λρ+ (1− λ) · 1) < λφ(ρ) + (1− λ)φ(1) = λρ+ (1− λ) · 1 = s,

so ρ is the unique solution of φ(s) = s.
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4.5 Kesten-Stigum Theorem

If Z∞(ω) = 0, then W∞(ω) = 0. How about the case of non-extinction? What’s the proba-

bility of {ω : W∞(ω) > 0} if Z∞(ω) > 0?

Theorem 4.21 (Kesten and Stigum). Let m > 1, TFAE

1. E(W∞) = 1

2. P(W∞ > 0|Z∞ > 0) = 1

3. P(W∞ = 0) = ρ

4. E(ξ ln+ ξ) <∞

Here ln+(x) = ln max{1, x}, ρ = P(Z∞ = 0).

Lemma 4.22. If P(W∞ = 0) < 1, then P(W∞ = 0) = P(Z∞ = 0) and hence

{W∞ > 0} = {Z∞ > 0} a.s.

Proof. Let ρ = P(W∞ = 0), conditioning on Z1, we have

ρ = P(W∞ = 0) =

∞∑
k=0

P(W∞ = 0|Z1 = k)pk =

∞∑
k=0

pk[P(W∞ = 0)]k = φ(ρ),

thus ρ is a root of φ(s) = s. If ρ < 1, by Proposition 4.20, ρ is the only root in (0, 1) and we

have

P(W∞ = 0) = ρ = P(Z∞ = 0).

Immediately,

P(W∞ > 0) = P(Z∞ > 0).

And {W∞ > 0} ⊆ {Z∞ > 0} because for any ω ∈ {W∞ > 0}, Zn(ω) cannot be 0 for some n,

otherwise Z∞(ω) = 0. We conclude that {W∞ > 0} = {Z∞ > 0} a.s.
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Proposition 4.23. Let m > 1, if E(ξ2) =
∑∞

k=1 k
2pk <∞, then P(W∞ = 0) = ρ.

Proof. By Proposition 4.12, E(W∞) = 1, which implies P(W∞ = 0) < 1. Then by Lemma

4.22, P(W∞ = 0) = ρ and {W∞ > 0} = {Z∞ > 0} a.s.

Remark. This is a weaker result than Theorem 4.21.

Now we start to prove Theorem 4.21.

Lemma 4.24. Define f(x) = E(e−xW∞). Then f satisfies Abel’s equation, i.e.

f(x) = φ(f(
x

µ
)).

Lemma 4.25. Let X be a r.v. with X ≥ 0 and 0 < E(X) = m <∞. Then for any a > 0,

∫ a

0

1

u2

[
E(e−uX/m)− e−u

]
du <∞

if and only if

E(X| logX|) <∞.
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5 Ergodic theory

5.1 Measure-preserving map

Definition 5.1. Suppose (Ω,F ,P) is a probability space, and φ : Ω → Ω is a measurable

map. We call φ a measure-preserving map, if for any A ∈ F ,

P[φ−1(A)] = P(A).

Lemma 5.2. φ is measure-preserving if and only if for any bounded r.v. X,

E(X ◦ φ) = E(X). (1)

If φ is measure-preserving, then (1) also holds for any X ∈ L1.

Proof. ⇐. Take X = 1A where A ∈ F , then

P(A) = E(1A) = E[1A(φ)] = P(ω : φ(ω) ∈ A) = P[φ−1(A)].

⇒. If φ preserves the measure, by the above argument, (1) holds for all indicators 1A, also

all simple functions. By approximation of simple functions, (1) holds for all X ∈ L1.

5.2 Stationary sequence

Definition 5.3 (stationary sequence). Let {Xi : i ∈ I} be a sequence of random variables

where the index set I is closed under addition (e.g. N,Z,R). We call it a stationary sequence

if for any k ∈ I, {Xi : i ∈ I} and {Xi+k : i ∈ I} have the same joint distribution (finite terms

have the same distribution).

Lemma 5.4. Suppose I = N or Z, then {Xi : i ∈ I} is stationary if and only if {Xi : i ∈ I}

and {Xi+1 : i ∈ I} have the same distribution.
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Example 5.5. Suppose X = {Xn : i ≥ 0} is a sequence of i.i.d. r.v., then X is stationary.

Proof. For any m ∈ N, suppose Ai ∈ B(R), 0 ≤ i ≤ m, then

P(X0 ∈ A0, · · · , Xm ∈ Am) =

m∏
i=0

P(Xi ∈ Ai) =

m+1∏
i=1

P(Xi ∈ Ai)P(X1 ∈ A0, · · · , Xm+1 ∈ Am).

By π-λ theorem, we have for any A ∈ B(Rm),

P[(X0, · · · , Xm) ∈ A] = P[(X1, · · · , Xm+1) ∈ A].

Example 5.6. Suppose X = {Xn : n ≥ 0} is a Markov chain with a unique stationary

distribution π. If X0 has distribution π, then X is stationary.

Proof. For any bounded and Sm+1-measurable function f , by Proposition 3.6,

Eπ[f(X1, X2, · · · , Xm+1)] =

∫
S

f(x1, x2, · · · , xm+1)π(dx0)
∫
S

p(x0, dx1) · · ·
∫
S

p(xm, dxm+1)

=

∫
S

f(x1, x2, · · · , xm+1)π(dx1) · · ·
∫
S

p(xm, dxm+1)

=

∫
S

f(x0, x1, · · · , xm)π(dx0) · · ·
∫
S

p(xm−1, dxm)

= Eπ[f(X0, X1, · · · , Xm)],

so (X0, · · · , Xm) and (X1, · · · , Xm+1) have the same distribution.

Proposition 5.7. Suppose X = {Xi : i ≥ 0} is stationary and g : RN → R is measurable.

Define

Yk = g({Xk+n : n ≥ 0}),

then Y = {Yk : k ≥ 0} is a stationary sequence.
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Proof. Define G : RN → RN by

G(X0, X1, · · · ) = (Y0, Y1, · · · ) = (g(X0, X1, · · · ), g(X1, X2, · · · ), · · · ),

obviously, for any k ≥ 0,

G(Xk, Xk+1, · · · ) = (Yk, Yk+1, · · · ).

For any bounded and measurable function f : RN → R, we have

E[f(Y0, Y1, · · · , Ym)] = E[f ◦G(X0, X1, · · · )]

= E[f ◦G(X1, X2, · · · )] (By Xn is stationary)

= E[f(Y1, Y2, · · · )],

thus {Yn : n ≥ 0} and {Yn : n ≥ 1} has the same distribution.

Proposition 5.8. Suppose X = {Xi : i ≥ 0}, then X can be extended to a stationary

sequence on Z, i.e. there exists a stationary sequence X̃ = {X̃i : i ∈ Z} s.t. {X̃i : i ≥ 0} and

{Xi : i ≥ 0} have the same distribution.

Proof. For any n ≥ 0, define

Pn(X̃−n ∈ A−n, X̃−n+1 ∈ A−n+1, · · · ) = P(X0 ∈ A−n, X1 ∈ A−n+1, · · · ),

then Pn, n ≥ 0 is consistent because

Pn+1(X̃−n−1 ∈ R, X̃−n ∈ A−n, X̃−n+1 ∈ A−n+1, · · · )

= P(X0 ∈ R, X1 ∈ A−n, X2 ∈ A−n+1, · · · )

= P(X0 ∈ A−n, X1 ∈ A−n+1, · · · )

= Pn(X̃−n ∈ A−n, X̃−n+1 ∈ A−n+1, · · · ).
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By Kolmogorov’s extension theorem, there exists probability measure P̃ s.t.

P̃(X̃−n ∈ A−n, X̃−n+1 ∈ A−n+1, · · · ) = Pn(X̃−n ∈ A−n, X̃−n+1 ∈ A−n+1, · · · ).

By the construction, {X̃i : i ≥ 0} and {Xi : i ≥ 0} have the same distribution. To show

{X̃i : i ≥ 0} is stationary, we only need to show the negative integer part, for any m,n ≥ 0

P̃(X̃−m+1 ∈ A−m, X̃−m+2 ∈ A−m+1, · · · , X̃n+1 ∈ An)

= P(X0 ∈ A−m, X1 ∈ A−m+1, · · · , Xm+n ∈ An)

= P̃(X̃−m ∈ A−m, X̃−m+1 ∈ A−m+1, · · · , X̃n ∈ An).

Proposition 5.9. Suppose φ : Ω → Ω is a measure-preserving map on (Ω,F ,P). Let φ0 := id,

φn = φ ◦ φn−1. For any X ∈ F , define Xn := X ◦ φn, then {Xn : n ≥ 0} is stationary.

Proof. For any bounded and measurable function f : RN → R,

E[f(X0, X1, · · · )] = E[f(X(ω), X(φ(ω)), X(φ2(ω)), · · · )]

= E[FX(ω))] here we define FX(ω) := f(X(ω), X ◦ φ(ω), X ◦ φ2(ω), · · · )

= E[FX ◦ φ(ω)] (By Lemma 5.2)

= E[f(X(φ(ω)), X(φ2(ω)), X(φ3(ω)), · · · )]

= E[f(X1, X2, · · · )],

therefore {Xn : n ≥ 0} and {Xn : n ≥ 1} have the same distribution.

Proposition 5.10. Suppose {Yn : n ≥ 0} is a stationary real-valued r.v. sequence, then there

exists a measure-preserving map φ : Ω → Ω and X ∈ F s.t. {Xn : n ≥ 0} and {Yn : n ≥ 0}

have the same distribution where Xn = X ◦ φ.
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Proof. First, (Y0, Y1, · · · , Ym) defines a probability measure Pm on B(Rm+1) by

Pm(A) = P((Y0, Y1, · · · , Ym) ∈ A),

and Pm,m ≥ 0 is obviously consistent, then by Kolmogorov’s extension theorem, there exists

a probability measure P̃ on (RN,B(RN)) s.t. for any A ∈ B(Rm+1),

P̃(A) = Pm(A).

For any ω = (ω0, ω1, · · · ) ∈ RN, define X(ω) = ω0, and shift operator

φ = θ1 : (ω0, ω1, · · · ) 7→ (ω1, ω2, · · · ),

then we have Xn(ω) = X ◦ φn(ω) = ωn.

φ is measure-preserving because for any A ∈ B(Rm+1),

P̃(φ−1(A)) = Pm[(Y0, Y1, · · · , Ym) ∈ φ−1(A)]

= Pm[(Y1, · · · , Ym+1) ∈ A]

= Pm[(Y0, · · · , Ym) ∈ A]

= P̃(A).

{Xn : n ≥ 0} and {Yn : n ≥ 0} have the same distribution because for any A ∈ B(Rm+1),

P̃((X0, X1, · · · , Xm) ∈ A) = P((ω0, ω1, · · · , ωm) ∈ A)

= P̃(A)

= P((Y0, Y1, · · · , Ym) ∈ A).
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5.3 Ergodicity

Definition 5.11. Suppose (Ω,F ,P) is a probability space, and φ : Ω → Ω is a measure-

preserving map. We call event A ∈ F invariant if φ−1(A) = A. We call φ ergodic if for any

invariant event A, we have P(A) ∈ {0, 1}.

Definition 5.12. Suppose {Xn : n ≥ 0} is a stationary sequence, we call it ergodic if the

induced measure-preserving map (shift operator) in Proposition 5.10 is ergodic.

Lemma 5.13. Set of invariant events I := {A ∈ F : φ−1(A) = A} is a σ-field. X is

I-measurable if and only if X ◦ φ = X a.s.

Proposition 5.14. Suppose φ : Ω → Ω is a measure-preserving map on (Ω,F ,P), TFAE

1. φ is ergodic;

2. For any A ∈ F , P(A4φ−1(A)) = 0 implies P(A) ∈ {0, 1};

3. For any A ∈ F , P(A) > 0 implies

P(
∞⋃
n=1

φ−n(A)) = 1;

4. (mixing) For any A,B ∈ F ,

lim
n→∞

1

n

n−1∑
k=0

P(φ−1(A) ∩ B) = P(A)P(B);

5. For any A,B ∈ F with P(A) > 0 and P(B) > 0, there exists n ≥ 1 s.t. P(φ−1(A)∩B) > 0;

6. For any X ∈ L2, X ◦ φ = X a.s. implies f = C a.s. where C is a constant.

Example 5.15. Suppose {Xn : n ≥ 0} is a sequence of i.i.d. r.v. Let (Ω = RN,F ,P) be the

probability space s.t. for any ω ∈ Ω, Xn(ω) = ωn. Then the shift operator φ on Ω is ergodic.
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Proof. Suppose A ∈ F is invariant, then A = φ−1(A), i.e.

A = {ω : ω ∈ A} = {ω : φ(ω) ∈ A} ∈ σ(X1, X2, · · · ),

By iteration, we have

A = {ω : φn(ω) ∈ A} ∈ σ(Xn, Xn+1, · · · ),

thus

A ∈ T =

∞⋂
k=0

σ(Xn : n ≥ k).

By Kolmogorov’s 0-1 law, we have P(A) ∈ {0, 1}, therefore φ is ergodic.

Example 5.16. Suppose {Xn : n ≥ 0} is a Markov chain on a countable state space S with

a stationary distribution π (π(x) > 0 for all x ∈ S). Then the induced shift operator φ is

ergodic if and only if Xn is irreducible.

5.4 Birkhoff’s Ergodic Theorem

In this section, we always suppose φ is a measure preserving map on (Ω,F ,P).

Theorem 5.17 (Birkhoff’s Ergodic Theorem). For any X ∈ L1,

1

n

n−1∑
k=0

X(φk) → E(X|I) a.s. and in L1.

Lemma 5.18 (Maximal ergodic lemma). Let Xk(ω) = X(φk(ω)) for k ∈ N and ω ∈ Ω.

Define

Sn(ω) =

n−1∑
k=0

Xk(ω),
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and

Mn(ω) = max{0, S1(ω), · · · , Sn(ω)}.

Then E(X1{Mn>0}) ≥ 0 for all n ∈ Z+.

Proof. For 1 ≤ k ≤ n,

Mn ◦ φ(ω) ≥ Sk ◦ φ(ω),

then

X(ω) +Mn ◦ φ(ω) ≥ X(ω) + Sk ◦ φ(ω) = Sk+1(ω),

thus

X(ω) ≥ Sk+1(ω)−Mn ◦ φ(ω), ∀1 ≤ k ≤ n. (1)

Since Mn ◦ φ(ω) ≥ 0, we have

X(ω) +Mn ◦ φ(ω) ≥ X(ω) = X0(ω) = S1(ω),

i.e. X(ω) ≥ S1(ω)−Mn ◦ φ(ω). Therefore,

E(X1{Mn>0}) ≥ E[(Sk −Mn ◦ φ)1{Mn>0}], ∀ 1 ≤ k ≤ n,

then

E(X1{Mn>0}) ≥ E
[
( max
1≤k≤n

Sk −Mn ◦ φ)1{Mn>0}

]
= E

[
(Mn −Mn ◦ φ)1{Mn>0}

]
≥ E [Mn −Mn ◦ φ] ,

the last inequality holds because

E(Mn) = E(Mn1{Mn>0}) + E(Mn1{Mn≤0}) = E(Mn1{Mn>0}) + 0 = E(Mn1{Mn>0}),
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and

E(Mn ◦ φ) = E(Mn ◦ φ1{Mn>0}) + E(Mn ◦ φ1{Mn≤0}) ≥ E(Mn ◦ φ1{Mn>0}).

Finally, since φ is measure preserving, by Lemma 5.2,

E [Mn −Mn ◦ φ] = 0.

Proof of Theorem 5.17. 1. We only need to prove the case when E(X|I) = 0, i.e.

Sn
n

→ 0, a.s. and in L1.

2. Define

X̄ = lim sup Sn
n
,

and let ε > 0, define D = {ω : X̄(ω) > ε}. Our goal is to prove P(D) = 0.

3.Since X̄(φ(ω)) = X̄(ω), we have

φ−1(D) = {φ−1(ω) : X̄(ω) > ε} = {ω : X̄(φ(ω)) > ε} = D,

thus D ∈ I.

4. Let X∗(ω) = (X(ω)− ε)1D(ω),

S∗
n(ω) = X∗(ω) + · · ·+X∗(φn−1(ω)),

M∗
n(ω) = max{0, S∗

1(ω), · · · , S∗
n(ω)},

Fn = {ω :M∗
n(ω) > 0}, and

F =

∞⋃
n=1

Fn = {sup
k≥1

S∗
k

k
> 0}.
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Then F = D.

5.E(X∗
1F ) ≥ 0.

6. From Step 5,

0 ≤ E(X∗
1D) = E((X − ε)1D) = E(X1D)− εP(D) = E(E(X|I)1D)− εP(D) = −εP(D),

then P(D) = 0. Therefore,

lim sup Sn
n

≤ 0, a.s.

Similarly,

lim inf Sn
n

≥ 0, a.s.

thus
Sn
n

→ 0, a.s.

7. Lp (p ≥ 1) convergence.

Take M > 0, let X ′
M = X1{|X|≤M}, X ′′

M = X −X ′
M . For X ′

M , by the above proof,

1

n

n−1∑
m=0

X ′
M (φmω)− E(X ′

M |I) → 0 a.s.

and ∣∣∣∣∣ 1n
n−1∑
m=0

X ′
M (φmω)− E(X ′

M |I)

∣∣∣∣∣
p

≤

(
1

n

n−1∑
m=0

∣∣X ′
M (φmω)

∣∣+ E(|X ′
M ||I)

)p

≤

(∣∣∣∣∣ 1n
n−1∑
m=0

M

∣∣∣∣∣+ |M |

)p

= (2M)p,
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then by the bounded convergence theorem,

E

∣∣∣∣∣ 1n
n−1∑
m=0

X ′
M (φmω)− E(X ′

M |I)

∣∣∣∣∣
p

→ 0.

For X ′′
M , we have

(
E

∣∣∣∣∣ 1n
n−1∑
m=0

X ′′
M (φmω)− E(X ′′

M |I)

∣∣∣∣∣
p)1/p

≤

(
E

∣∣∣∣∣ 1n
n−1∑
m=0

X ′′
M (φmω)

∣∣∣∣∣
p)1/p

+
(
E
∣∣E(X ′′

M |I)
∣∣p)1/p

≤

(
1

n

n−1∑
m=0

E
∣∣X ′′

M (φmω)
∣∣p)1/p

+
(
E[E(|X ′′

M |p|I)]
)1/p

= 2(E|X ′′
M |p)1/p.

Therefore

lim sup
n→∞

(
E

∣∣∣∣∣ 1n
n−1∑
m=0

X(φmω)− E(X|I)

∣∣∣∣∣
p)1/p

≤ lim sup
n→∞

(
E

∣∣∣∣∣ 1n
n−1∑
m=0

X ′
M (φmω)− E(X ′

M |I)

∣∣∣∣∣
p)1/p

+ lim sup
n→∞

(
E

∣∣∣∣∣ 1n
n−1∑
m=0

X ′′
M (φmω)− E(X ′′

M |I)

∣∣∣∣∣
p)1/p

≤ 2(E|X ′′
M |p)1/p,

since M is arbitrary, let M → ∞, the above limit then goes to 0, now Lp convergence is

proved.

5.5 Recurrence

Theorem 5.19. Let {Xn : n ≥ 1} be a stationary sequence with Xi : Ω → Rd. Let

Sn =

n∑
k=1

Xk,

A = {ω : Sn(ω) 6= 0 ∀n ≥ 1},
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i.e. the set of trajectories that never hit 0. Let Rn = #{S1, · · · , Sn} be the number of points

(without repeat) visited by time n. Then

Rn

n
→ E(1A|I) a.s.

as n→ ∞.

5.6 Subadditive ergodic theorem

Theorem 5.20. Suppose Xm,n, 0 ≤ m < n, is a r.v. series satisfying

(i) X0,m +Xm,n ≥ X0,n

(ii) {Xnk,(n+1)k, n ≥ 1} is a stationary sequence for each k ≥ 1

(iii) The distribution of {Xm,m+k : k ≥ 1} does not depend on m

(iv) E(X+
0,1) <∞ and for each n, E(X0,n) ≥ γ0n for some γ0 > −∞

Then there exists γ ∈ R and r.v. X ∈ L1 s.t.

(a)

lim
n→∞

E(X0,n)

n
= inf

n

E(X0,n)

n
= γ

(b)

X0,n

n
→ X a.s. and in L1,

and E(X) = γ

(c) if all the stationary sequences in (ii) are ergodic, then

X = γ a.s.
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6 Brownian motion

Brownian motion is a Gaussian Markov process with stationary independent increments.

6.1 Definition and simple properties

Definition 6.1 (First definition of Brownian motion). A real-valued process Bt, or written

as B(t), t ∈ [0,∞) is called a Brownian motion if

(1) (Independent increment) For any 0 ≤ t0 < t1 < · · · < tn,

B(t0), B(t1)− B(t0), · · · , B(tn)− B(tn−1)

are independent;

(2) For any s, t ∈ [0,∞),

Bs+t − Bs ∼ N (0, t);

(3) With probability 1, t→ Bt is continuous.

Proposition 6.2 (Translation invariance). {Bt − B0, t ≥ 0} is independent of B0 and has

the same distribution as Brownian motion {B̃t, t ≥ 0} with B̃0 = 0.

Proof. 1. Let A1 = σ(B0) = σ({B0 ∈ A0}, A0 ∈ B(R)), and A2 be the set of events of the

following form

{Bt1 − B0 ∈ A1, · · · , Btn − Btn−1 ∈ An},

where Ai ∈ B(R). Then A1 and A2 are independent by the property of independent incre-

ment. They are also both π-system. Then σ(A1) and σ(A2) are independent.

2. Claim: σ(A2) = σ({Bt − B0 : t ≥ 0}).

We can show σ(Bt1 − B0, Bt2 − Bt1 , · · · , Btn − Btn−1) = σ(Bt1 − B0, Bt2 − B0, · · · , Btn − B0).
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Take the union over all 0 < t1 < · · · < tn, we have σ(A2) = σ({Bt −B0 : t ≥ 0}). This Claim

is proved. Therefore {Bt − B0, t ≥ 0} is independent of B0.

3. For 0 < t1 < · · · < tn, we have

(Bt1 − B0, Bt2 − Bt1 , · · · , Btn − Btn−1)

has the same distribution as

(B̃t1 , B̃t2 − B̃t1 , · · · , B̃tn − B̃tn−1),

therefore,

σ(Bt1 − B0, Bt2 − B0, · · · , Btn − B0) = σ(Bt1 − B0, Bt2 − Bt1 , · · · , Btn − Btn−1)

= σ(B̃t1 , B̃t2 − B̃t1 , · · · , B̃tn − B̃tn−1)

= σ(B̃t1 , B̃t2 , · · · , B̃tn),

which means {Bt−B0 : t ≥ 0} and {B̃t : t ≥ 0} have the same finite dimensional distribution,

thus they have the same distribution.

Proposition 6.3 (Scaling relation). Suppose {Bt : t ≥ 0} is a Brownian motion with B0 = 0,

then for any t > 0, {Bst : s ≥ 0} and {t1/2Bs : s ≥ 0} have the same distribution.

Proof. We need to show they have the same finite dimensional distribution. Let s1 > 0, then

Bs1t ∼ N (0, s1t)

and

t1/2Bs1 ∼ t1/2N (0, s1) = N (0, s1t),

so Bs1t and t1/2Bs1 has the same distribution. Let 0 < s1 < s2, then X = (Bs1t, Bs2t −Bs1t)
T
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is multivariant Gaussian with

E(X) =

0

0

 , Σ(X) =

s1t 0

0 (s2 − s1)t

 ,

and Y = (t1/2Bs1 , t
1/2Bs2 − t1/2Bs1)

T is also multivariant Gaussian with the same mean and

covariance matrix. By the property of multivariant Gaussian distribution, X and Y have

the same distribution. ThusBs1t

Bs2t

 =

1 0

1 1

X,

t1/2Bs1

t1/2Bs2

 =

1 0

1 1

Y

has the same distribution.

Definition 6.4 (Second definition of Brownian motion). A real-valued process {Bt, t ∈

[0,∞)} with B0 = 0 is called Brownian motion if

(1′) Bt is a Gaussian process, i.e. for any t0, t1, · · · , tn,

(B(t0), B(t1), · · · , B(tn))

is a multivariant Gaussian distribution.

(2′) For any s, t ∈ [0,∞), E(Bs) = 0, and

E(BsBt) = s ∧ t;

(3′) With probability 1, t→ Bt is continuous.

Proposition 6.5. The second definition is equivalent to the first definition with B0 = 0.
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Proof. (1)(2) =⇒ (1′). Notice that

B(ti) = B(t0) + B(t1)− B(t0) + · · ·+B(ti)− B(ti−1),

then 

B(t0)

B(t1)

B(t2)

...

B(tn)


=



1 0 0 · · · 0 0

1 1 0 · · · 0 0

1 1 1 · · · 0 0

... ... ... · · · ... ...

1 1 1 · · · 1 1





B(t0)

B(t1)− B(t0)

B(t2)− B(t1)

...

B(tn)− B(tn−1)


where (B(t0), B(t1) − B(t0), · · · , B(tn) − B(tn−1))

T is multivariant Gaussian, thus its linear

transformation (B(t0), B(t1), · · · , B(tn))
T is also multivariant Gaussian.

(1)(2)=⇒ (2′). First,

E(Bs) = E(Bs − B0) + E(B0) = 0,

second, suppose s < t,

E(BsBt) = E(Bs(Bt − Bs)) + E(B2
s ) = s.

(1′)(2′)=⇒(1). For any t0 < t1 < · · · < tn, since

B(t0)

B(t1)− B(t0)

B(t2)− B(t1)

...

B(tn)− B(tn−1)


=



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

... ... ... · · · ... ...

0 0 0 · · · −1 1





B(t0)

B(t1)

B(t2)

...

B(tn)
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(B(t0), B(t1)− B(t0), · · · , B(tn)− B(tn−1))
T is multivariant Gaussian. For k < j,

Cov(B(tk)− B(tk−1), B(tj)− B(tj−1)) = E[(Btk − Btk−1)(Btj − Btj−1)]

= E[BtkBtj +Btk−1Btj−1 − BtkBtj−1 − Btk−1Btj ]

= tk + tk−1 − tk − tk−1 = 0,

thus the covariance matrix of Gaussian (B(t0), B(t1)−B(t0), · · · , B(tn)−B(tn−1))
T is diag-

onal, which implies B(t0), B(t1)− B(t0), · · · , B(tn)− B(tn−1) are independent.

(1′)(2′)=⇒(2). For any s, t ≥ 0, Bs+t − Bs is the linear combination of two Gaussian distri-

butions, thus it is also Gaussian,

E(Bs+t − Bs) = 0, Var(Bs+t − Bs) = E[(Bs+t − Bs)
2] = t,

so Bs+t − Bs ∼ N (0, t).

6.2 Construction

Theorem 6.6. Define

Ω0 = {functions ω : [0,∞) → R},

and

F0 = σ({ω : ω(ti) ∈ Ai, 1 ≤ i ≤ n, }),

where Ai ∈ B. Then for any x ∈ R, there exists a unique probability measure νx on (Ω0,F0),

s.t.

• νx({ω : ω(0) = x}) = 1;

• νx({ω : ω(t1) ∈ A1, · · · , ω(tn) ∈ An}) = µx,t1,··· ,tn(A1 × A2 × · · · × An),
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where

µx,t1,··· ,tn(A1×A2×· · ·×An) =

∫
A1

pt1(x, x1)dx1
∫
A2

pt2−t1(x1, x2)dx2 · · ·
∫
An

ptn−tn−1(xn−1, xn)dxn,

and

pt(x, y) =
1√
2πt

e−
(x−y)2

2t .

Proof. Check consistency and apply Kolmogorov’s extension theorem.

Remark. Although the construction in Theorem 6.6 satisfies Definition (1)(2) and (3), it

fails to satisfy (4). Specifically, if C = {ω : [0,∞) → R is continuous}, then C /∈ F0. Actually,

Ω0 is too large and F0 is too coarse.

Lemma 6.7. For any Γ ∈ F0, there is a countable set S = SΓ ⊆ [0,∞) s.t. for any ω ∈ Ω0,

γ ∈ Γ satisfying

ω
∣∣
S
= γ
∣∣
S
,

we have ω ∈ Γ.

Proof. Let Σ = {Γ ⊆ Ω0 : the above property holds for some countable set S ⊆ [0,∞)}.

Claim: Σ is a σ-algebra.

For any t ∈ [0,∞) and A ∈ B(R), B−1
t (A) ⊆ Σ because we can choose S = {t}. Let

A = {B−1
t (A) : A ∈ B(R), t ∈ [0,∞)},

which is a π-system, and Σ is a λ-system, then by π-λ theorem,

F0 = σ(A) ⊆ Σ.

Corollary 6.8. C /∈ F0.
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Proof. Suppose C ∈ F0, , let S ⊆ [0,∞) be the countable set in the Lemma, for a fixed

continuous function f ∈ Ω0, choose t0 ∈ [0,∞) \ S, define ω ∈ Ω by

ω(t) =


f(t) if t 6= t0

f(t0) + 1 if t = t0

then t0 is a removable discontinuity point for ω, thus ω /∈ C, which contradicts the above

Lemma!

In order to construct the Brownian motion that satisfies all properties in the definition,

we need some preparation. The basic idea is to construct the path on the dense set Q2 first,

then extend it to [0,∞).

Theorem 6.9 (Kolmogorov’s continuity theorem). Suppose {Xt, t ∈ [0, 1]} is a process de-

fined on (Ω,F ,P), s.t. for any s, t ∈ [0, 1],

E(|Xt −Xs|β) ≤ K|t− s|1+α,

where α, β > 0. If 0 < γ <
α

β
, then with probability 1, there exists a constant C, s.t. for any

q, r ∈ Q2 ∩ [0, 1],

|X(q)−X(r)| ≤ C|q − r|γ .

Proof. 1. Let

Gn = {ω :

∣∣∣∣X(
i

2n
)−X(

i− 1

2n
)

∣∣∣∣ ≤ 2−γn, ∀ 0 < i ≤ 2n}.

We want to show Gn holds for any large n with probability 1. Notice that

Gc
n = {

∣∣∣∣X(
i

2n
)−X(

i− 1

2n
)

∣∣∣∣ > 2−γn, for some 0 < i ≤ 2n} ⊆
2n⋃
i=1

{
∣∣∣∣X(

i

2n
)−X(

i− 1

2n
)

∣∣∣∣ > 2−γn},
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so

P(Gc
n) =

2n∑
i=1

P
(∣∣∣∣X(

i

2n
)−X(

i− 1

2n
)

∣∣∣∣ > 2−γn

)

≤
2n∑
i=1

(2−γn)−βE

(∣∣∣∣X(
i

2n
)−X(

i− 1

2n
)

∣∣∣∣β
)

(Chebyshev’s inequality)

≤
2n∑
i=1

2βγn ·K
∣∣∣∣ i2n − i− 1

2n

∣∣∣∣1+α

≤
2n∑
i=1

2βγn ·K2−n(1+α)

= 2n · 2βγn ·K2−n(1+α)

= K · 2−nλ,

where λ = α− βγ > 0.

Let HN =
⋂∞

n=N Gn, then Hc
N =

⋃∞
n=N Gc

n,

P(Hc
N ) ≤

∞∑
n=N

P(Gc
n) ≤

∞∑
n=N

K · 2−nλ =
K2−Nλ

1− 2−λ
,

thus
∞∑

N=1

P(Hc
N ) ≤ K

1− 2−λ
· 2−λ

1− 2−λ
<∞,

by Borel-Cantelli lemma, P(Hc
N , i.o.) = 0. Hence for almost sure ω ∈ Ω, ω is only in

finitely many Hc
N , in other words, there exists N0(ω) s.t. whenever N ≥ N0, ω /∈ Hc

N , i.e.

ω ∈ HN =
⋂∞

n=N Gn.

2. On HN , we have for all q, r ∈ Q2 ∩ [0, 1] with |q − r| < 2−N ,

|X(q)−X(r)| ≤ 3

1− 2−γ
|q − r|γ .

3. From Step 1, for almost sure ω, for q, r ∈ Q2 ∩ [0, 1], we have |q − r| < δ(ω) = 2−N0(ω),
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then from Step 2,

|X(q)−X(r)| ≤ A|q − r|γ .

4. We want to extend the above equation to all q, r ∈ Q2 ∩ [0, 1]. Suppose r − q > δ(ω), let

S0 = q < s1 < · · · < sk = r with |si − si+1| =
r − q

k
≤ δ(ω) (thus k ≥ r − q

δ
> 1), then

|X(q)−X(r)| ≤
k∑

i=1

|X(si)−X(si−1)| ≤ A

k∑
i=1

|si − si−1|γ = A

k∑
i=1

∣∣∣q − r

k

∣∣∣γ = C(ω)|q − r|γ ,

where C(ω) = Ak1−γ ≤ A.

Now we can start to construct the desired Brownian motion.

Theorem 6.10. Define Q2 = {m
2n

: m,n ∈ N}, and

Ωq = {functions ω : Q2 → R},

and

Fq = σ({ω ∈ Ωq : ω(ti) ∈ Ai, 1 ≤ i ≤ n}),

where Ai ∈ B. Then for any x ∈ R, there exists a unique probability measure νx on (Ωq,Fq),

s.t.

• νx({ω : ω(0) = x}) = 1;

• for any 0 < t1 < · · · < tn and ti ∈ Q2,

νx({ω : ω(t1) ∈ A1, · · · , ω(tn) ∈ An}) = µx,t1,··· ,tn(A1 × A2 × · · · × An).

The Brownian motion in this construction is continuous by the following Lemma.
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Lemma 6.11. Let T <∞ and x ∈ R, define

A = {ω ∈ Qq : ω uniformly continuous on Q2 ∩ [0, T ]},

then νx(A) = 1.

Proof. By scaling and translation invariance, Bt with B0 = x has the same distribution as

T 1/2Bt/T with B0 = 0, we can assume x = 0 and T = 1. Then

E0(|Bt − Bs|4) = E0(|Bt−s − B0|4) = E0(|Bt−s|4) = E0(|(t− s)1/2B1|4) = (t− s)2E0(|B1|4).

Apply Kolmogorov’s continuity theorem and let α = 1, β = 4, let γ < 1/4, then for almost

sure ω ∈ Ωq, there exists a constant C, s.t. for any q, r ∈ Q2 ∩ [0, 1],

|B(q)− B(r)| ≤ C|q − r|γ .

For any ε > 0, let δ = (ε/C)1/γ , then for any q, r ∈ Q2 ∩ [0, 1] with |q − r| < δ,

|B(q)− B(r)| ≤ C|q − r|γ < ε,

i.e. such path ω is uniformly continuous.

Therefore the Brownian paths constructed in Theorem 6.10 are continuous on Q2. More-

over, thanks to the uniform continuity, we can actually extend the continuity from Q2 to

[0,+∞).

Lemma 6.12. If f : Q2 → R is uniformly continuous, then there exists a unique continuous

function g : [0,∞) → R s.t. f = g on Q2.
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Now define C = {continous functions ω : [0,∞) → R},

C = σ({ω ∈ C : ω(ti) ∈ Ai, 1 ≤ i ≤ n}),

where Ai ∈ B. Let Ω′
q is the set of the uniformly continuous functions in Ωq, by Lemma 6.12,

there exists a unique map ψ : Ω′
q → C s.t. for any ω ∈ Ω′

q, ψ(ω) is ω’s unique continuous

extension on [0,∞).

Lemma 6.13. ψ defined above is invertible and measurable.

By Lemma 6.13, we can define measure Px on (C, C) by

Px = νx ◦ ψ−1.

Now the Brownian motion defined on (Ω,F ,P) := (C, C,Px) satisfies all properties in the

definition. We have finished the construction.

•

Below are two important properties related to the continuity of Brownian paths.

Definition 6.14. For Γ > 0, a function f : [0,∞) → R is called (locally) γ-Hölder continuous

if for every interval [a, b], there is a constant C = C(f, γ, [a, b]) > 0, s.t.

|f(s)− f(t)| ≤ C|s− t|γ , ∀s, t ∈ [a, b].

If γ = 1, we say f is (locally) Lipschitz continuous.

Theorem 6.15 (Wiener,1923). For any 0 < γ < 1/2, with probability 1, Brownian paths are

γ-Hölder continuous.
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Proof. For any m ∈ Z+, let s > t, then

E(|Bs − Bt|2m) = E[((s− t)1/2)2m|B1|2m] = Cm|s− t|m,

where Cm = E(|B1|2m). Apply Kolmogorov’s continuity theorem and take α = m−1, β = 2m,

we have with probability 1, for all s, t ∈ Q2 ∩ [0, 1],

|Bs − Bt| ≤ C|s− t|γ ,

where

γ <
α

β
=
m− 1

2m
.

Let m→ ∞, γ < 1

2
.

Theorem 6.16. With probability 1, Brownian paths are nowhere Lipschitz continuous.

Proof. 1. By translation invariance, we only need to show Brownian path is nowhere Lips-

chitz continuous on interval [0, 1].

2. Suppose t 7→ Bt is locally Lipschitz continuous at s ∈ [0, 1], then there exists C > 0 and

δ > 0 s.t. for all t with |t− s| < δ, we have

|B(s)− B(t)| ≤ C|s− t|. (1)

Define

E = {ω : ∃s ∈ [0, 1] s.t.Bt is locally Lipschitz continuous at s},

An,C = {ω : ∃s ∈ [0, 1]} s.t. |B(t)− B(s)| ≤ C|t− s| for all |t− s| ≤ 3

n
}.

then E ⊆
⋃∞

C=1

⋃∞
n=1An,C . For 1 ≤ k ≤ n− 2, let

Yk,n = max{
∣∣∣∣B(

k + j

n
)− B(

k + j − 1

n
)

∣∣∣∣ : j = 0, 1, 2},
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Bn,C = {at least one 1 ≤ k ≤ n− 2 s.t. Yk,n ≤ 5C

n
}.

3. An,C ⊆ Bn,C .

Suppose a path ω ∈ An,C . If 0 ≤ s ≤ n− 2

n
, there exists 1 ≤ k ≤ n − 2, s.t. s ∈ [

k − 1

n
,
k

n
],

then

∣∣∣∣B(
k

n
)− B(

k − 1

n
)

∣∣∣∣ ≤ ∣∣∣∣B(
k

n
)− B(s)

∣∣∣∣+ ∣∣∣∣B(s)− B(
k − 1

n
)

∣∣∣∣ ≤ C|s− k − 1

n
|+ C|s− k

n
| ≤ C

n
,

∣∣∣∣B(
k + 1

n
)− B(

k

n
)

∣∣∣∣ ≤ 3C

n
,∣∣∣∣B(

k + 2

n
)− B(

k + 1

n
)

∣∣∣∣ ≤ 5C

n
,

so Yk,n ≤ 5C

n
, ω ∈ Bn,C . If n− 2

n
≤ s ≤ 1, same argument can show ω ∈ Bn,C . Therefore

An,C ⊆ Bn,C .

4. P(
⋃∞

n=1An,C) = 0.
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Notice that

P(An,C) ≤ P(Bn,C)

≤ P

(
n−2⋃
k=1

{Yk,n ≤ 5C

n
}

)

≤ nP
(
Yk,n ≤ 5C

n

)
≤ nP

(∣∣∣∣B(
k + j

n
)− B(

k + j − 1

n
)

∣∣∣∣ ≤ 5C

n
, j = 0, 1, 2

)
≤ n

[
P
(∣∣∣∣B(

1

n
)

∣∣∣∣ ≤ 5C

n

)]3
= n

[
P
(
|B1| ≤

5C√
n

)]3
= n

[
2

∫ 5C/
√
n

0

1√
2π
e−

−x2

2 dx
]3

≤ n

[
10C√
2πn

]3
→ 0,

as n→ ∞. Since An,C ⊆ An+1,C ,

P

( ∞⋃
n=1

An,C

)
= lim

n→∞
P(An,C) ≤ lim

n→∞
P(Bn,C) = 0.

Therefore E is contained in a null set.

Ec = {ω : Bt is nowhere Lipschitz continuous}

contains a set w.p.1., although we don’t know whether Ec is measurable.
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6.3 Markov property and Blumenthal’s 0-1 law

Definition 6.17. Suppose {Bt : t ≥ 0} is a Brownian motion, define

F0
s = σ(Bt : t ≤ s),

and

F+
s =

⋂
t>s

F0
t .

Proposition 6.18. F0
s ⊆ F+

s .

Proof. For any t > s, F0
s ⊆ F0

t , thus

F0
s ⊆

⋂
t>s

F0
t = F+

s .

Proposition 6.19. F+
s is right continuous, i.e.

⋂
t>s

F+
t = F+

s .

Proof. By definition, ⋂
t>s

F+
t =

⋂
t>s

⋂
u>t

F0
u =

⋂
u>s

F0
u = F+

s .

However, F0
s is not right continuous.

Definition 6.20. For x ∈ Rd, suppose Bt(ω) = ω(t) is a Brownian motion on (C, C,Px). For

s ≥ 0, define the shift transformation θs : C → C by

θs(ω(t)) = ω(s+ t), t ∈ [0,∞).

Theorem 6.21 (Markov property). Suppose s ≥ 0, Y : C → R is bounded and C-measurable,
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then for any x ∈ Rd,

Ex(Y ◦ θs|F+
s ) = EBs

(Y )

Proof. This proof is very similar to the proof of Theorem 3.8.

1. By the definition of conditional expectation, we only need to show for any A ∈ F+
s ,

E[(Y ◦ θs)1A] = E[EBs
(Y )1A].

Corollary 6.22. Ex(Y ◦ θs|F+
s ) = Ex(Y ◦ θs|F0

s ).

Proof. By Theorem 6.21,

Ex(Y ◦ θs|F+
s ) = EB(s)(Y ) ∈ F0

s ⊆ F+
s ,

then Proposition 1.7 implies

Ex(Y ◦ θs|F+
s ) = Ex(Y ◦ θs|F0

s ).

Proposition 6.23. If Z is bounded and C-measurable, then for any s ≥ 0 and x ∈ Rd,

Ex(Z|F+
s ) = Ex(Z|F0

s ). (1)

Proof. We only need to prove the case when

Z =

n∏
m=1

fm(B(tm)),

where t1 < t1 < · · · < tn and fm are bounded and measurable. Suppose tk ≤ s, let

Z1 =

k∏
m=1

fm(B(tm)) ∈ F0
s ⊆ F+

s ,
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and

Z2 =

n∏
m=k+1

fm(B(tm)) = Y ◦ θs,

for some C-measurable Y , then Z = Z1Z2 = Z1(Y ◦ θs). Therefore

Ex(Z|F+
s ) = Ex[Z1(Y ◦θs)|F+

s ] = Z1Ex[Y ◦θs|F+
s ] = Z1Ex[Y ◦θs|F0

s ] = Ex[Z1(Y ◦θs)|F0
s ] = Ex[Z|F0

s ].

Corollary 6.24. F+
s and F0

s are the same up to null sets.

Proof. First F0
s ⊆ F+

s . Let Z is F+
s -measurable, then by Proposition 6.23,

Z = E(Z|F+
s ) = E(Z|F0

s ) a.s.,

so Z is F0
s -measurable except for some null sets. Thus F+

s ⊆ F0
s except for some null sets.

Theorem 6.25 (Blumenthal’s 0-1 law). If A ∈ F+
0 , then for any x ∈ Rd,

Px(A) ∈ {0, 1}.

Proof. Since 1A ∈ F0
0 and F0

0 = σ(B0) = {∅,Ω} is trivial, thus

1A = Ex(1A|F0
0 ) = Ex(1A) = Px(A), a.s.

therefore almost surely Px(A) ∈ {0, 1}.

Remark. We call F+
0 germ field, and Blumenthal’s 0-1 law implies germ field is trivial.

Proposition 6.26. If τ = inf{t ≥ 0 : Bt > 0}, then P0(τ = 0) = 1.
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Proof. 1. By {Bt > 0} ⊆ {τ ≤ t} and Bt ∼ N (0, t),

P0(τ ≤ t) ≥ P0(Bt > 0) =
1

2
.

2. Since {τ < 1

n
} ↓ {τ = 0}, by the continuity of measure, we have

P0(τ = 0) = P0

( ∞⋂
n=0

{τ ≤ 1

n
}

)
= lim

n→∞
P0(τ ≤ 1

n
) ≥ 1

2
.

3. {τ ≤ t} ⊆ {Bt > 0} ∈ F0
t implies

{τ = 0} =
⋂
t>0

{τ ≤ t} ∈ F+
0 ,

thus by Blumenthal’s 0-1 law (Theorem 6.25), P0(τ = 0) = 1.

Remark. This result says Brownian path starting from 0 must immediately hit (0,+∞),

also immediately hit (−∞, 0) by symmetry.

Proposition 6.27. Suppose {Bs : s ≥ 0} starts from 0. Let T0 = inf{t > 0 : Bt = 0},

Z = {t ≥ 0 : Bt = 0}. Then with probability 1,

1. Brownian path changes its sign infinitely many times in any interval [0, ε] (ε > 0).

2. T0 = 0.

3. 0 is an accumulation point of Z.

Proof. 1. Let τ ′ = inf{t ≥ 0 : Bt < 0}. By Proposition 6.26, for each path ω ∈ {τ = 0}∩{τ ′ =

0} (w.p.1.), we have inf{t ≥ 0 : Bt > 0} = 0, i.e. for any ε > 0, Bt0 > 0 for some t0 ∈ (0, ε).

Thus there is a sequence tn ↓ 0 with tn ∈ (0, tn−1) (so all different), s.t. Btn > 0 for all n ∈ N.

Similarly, there is a sequence sn ↓ 0, s.t. Bsn < 0 for all n ∈ N. Therefore the path ω changes

sign infinitely many times.
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2 and 3. For each path ω ∈ {τ = 0} ∩ {τ ′ = 0} ∩ {continuous paths} (w.p.1.), by continuity

and Bsn < 0, Btn > 0, we can find un between sn and tn s.t. Bun = 0. Moreover, the sequence

un ↓ 0, which implies T0 = 0 and 0 is an accumulation point of Z.

Lemma 6.28 (Law of large number for Brownian motion). Suppose {Bt : t ≥ 0} starts from

0, then

lim
t→∞

Bt

t
= 0, a.s.

Proof. For integer case, Since Bn+1 − Bn ∼ N (0, 1), by the strong law of large number,

Bn

n
=

∑n−1
0 (Bn+1 − Bn)

n
→ 0, a.s.

For real values between integers, we will use Kolmogorov’s inequality (Theorem 2.22). For

m ∈ Z+, let

Xi = B(n+
i

2m
)− B(n+

i− 1

2m
),

then Xi ∼i.i.d. N (0,
1

2m
). Let

Sk =

k∑
i=1

Xi = B(n+
k

2m
)− B(n),

we have Var(Sk) =
k∑

i=1

Var(Xi) =
k

2m
. By Kolmogorov’s inequality,

P
(

sup
1≤k≤2m

|B(n+
k

2m
)− B(n)| > n2/3

)
= P

(
sup

1≤k≤2m
|Sk| > n2/3

)
≤ Var(S2m)

n4/3
=

2m

2mn4/3
=

1

n4/3
,

let m→ ∞, we have

P

(
sup

t∈[n,n+1]

|B(u)− B(n)| > n2/3

)
≤ 1

n4/3
.
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Since
∞∑
n=1

1

n4/3
<∞, by Borel-Catelli lemma,

P

(
sup

t∈[n,n+1]

|B(u)− B(n)| > n2/3, i.o.

)
= 0,

which means for almost sure ω,

sup
t∈[n,n+1]

|B(t)− B(n)| > n2/3

holds for only finitely many n, i.e. for all large enough n,

sup
t∈[n,n+1]

|B(t)− B(n)| ≤ n2/3.

Therefore for any large enough t, let [t] be the integer part of t,∣∣∣∣Bt

t

∣∣∣∣ ≤ |Bt|
[t]

=
1

[t]
|Bt − B[t] +B[t]|

≤ 1

[t]
|Bt − B[t]|+

|B[t]|
[t]

≤ [t]2/3

[t]
+

|B[t]|
[t]

→ 0

Proposition 6.29. Suppose Bt is a Brownian motion with B0 = 0. Define

Xt =


0 t = 0

tB(
1

t
) t > 0

then {Xt : t ≥ 0} is also a Brownian motion starting from 0.

Proof. Check the definition of Brownian motion.
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(i) For 0 < t1 < t2 < · · · < tn,

(X(t1), · · · , X(tn)) = (t1B(
1

t1
), · · · tnB(

1

tn
))

is multivariant Gaussian.

(ii) For any t > 0, E(Xt) = E(tB1/t) = 0.

(iii) For any 0 < t < s,

E(XtXs) = E(tsB1/sB1/t) = ts · 1
s
= t.

(iv) For t > 0, since Bt and 1/t are continuous, their composition B(1/t) is also continuous,

thus Xt is continuous on (0,∞). For t = 0, by Lemma 6.28,

lim
t→0+

X(t) = lim
t→0+

tB(
1

t
) = lim

s→+∞

B(s)

s
= 0 = X(0),

thus X(t) is also continuous at 0.

Theorem 6.30 (Kolmogorov’s 0-1 law). If A ∈ T =
⋂

t≥0 σ(Bs : s ≥ t), then Px(A) ∈ {0, 1}.

Proposition 6.31. Suppose Bt starting from 0 is a Brownian motion in R, then almost

surely,

lim sup
t→∞

Bt√
t
= ∞, lim inf

t→∞

Bt√
t
= −∞.

Proof. Notice

lim sup
t→∞

Bt√
t
≥ lim sup

n→∞

Bn√
n
,

so we only need to show the integer case. Let K <∞, then by scaling invariance

P0(
Bn√
n
≥ K i.o.) ≥ lim sup

n→∞
P0(Bn ≥ K

√
n) = P0(B1 ≥ K) > 0.
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And

{Bn√
n
≥ K i.o.} =

⋂
m≥1

⋃
n≥m

{Bn√
n
≥ K} ∈ T ,

thus by Kolmogorov’s 0-1 law (Theorem 6.30),

P0(
Bn√
n
≥ K i.o.) = 1.

Since AK = {Bn√
n

≥ K i.o.} ↓ {Bn√
n

= ∞ i.o.} = {lim sup
n→∞

Bn√
n

= ∞}, by the continuity of

probability, we have

P0(lim sup
n→∞

Bn√
n
= ∞) = lim

K→∞
P0(AK) = 1.

The lim inf case is also true by symmetry.

Proposition 6.32 (one-dimensional Brownian motion is recurrent). Suppose Bt is a Brow-

nian motion in R, let

A =
⋂
n

{there exists some t ≥ n s.t. Bt = 0},

then Px(A) = 1 for any x ∈ R.

Proof. For any continuous Brownian path Bt (w.p.1.), by Proposition 6.31 and translation

invariance (Bm−B0 is a Brownian motion starting from 0), there are infinitely many m,n ∈

Z+ s.t. Bm√
m

= −∞ and Bn√
n

= ∞, so Bm < 0 and Bn > 0 i.o. By continuity, Bk = 0 for

i.o. k ∈ Z+. (Take N1 > 0, we have Bn1 > 0 and Bm1 < 0 for some m1, n1 > N1, then there

must be some k1 between m1 and n1 s.t. Bk1 = 0. Take N2 = k1, repeat this step, we can

construct a sequence ki ↑ ∞ s.t. Bki = 0). Therefore

A =
⋂
n

⋃
m≥n

{Bm = 0} = {Bn = 0 i.o.}

has probability 1.
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Based on the above discussions, we can improve our filtration by adding all null sets.

Definition 6.33 (Filtration of Brownian motion). Let

Nx = {A ∈ F : A ⊆ D,Px(D) = 0}

Fx
s = σ(F+

s ∪Nx)

Fs =
⋂
x

Fx
s .

Fs is called the filtration of Brownian motion.

Remark. Fs does not depend on the initial state and is right-continuous.

At the end, we introduce two alternative forms of Markov property.

Theorem 6.34. For t ≥ 0, suppose Y is a bounded and σ(Bs, s ≥ t)-measurable, then

Ex(Y |Ft) = Ex(Y |Bt).

Proof. Y ◦ θ−t is bounded and C-measurable, applying Markov property (Theorem 6.21), we

have

Ex(Y |Ft) = Ex[(Y ◦ θ−t) ◦ θt|Ft] = EBt
(Y ◦ θ−t) ∈ σ(Bt),

Taking conditional expectation on Bt, we have

Ex[Ex(Y |Ft)|Bt] = Ex[EBt
(Y ◦ θ−t)|Bt],

the left side above is Ex(Y |Bt) since σ(Bt) ⊆ Ft, the right side is EBt
(Y ◦ θ−t) = Ex(Y |Ft),

therefore

Ex(Y |Ft) = Ex(Y |Bt).

Theorem 6.35. Suppose {Bt : t ≥ t} is a Brownian motion with B0 = x, for any s ≥ 0,

{Bt+s − Bs : t ≥ 0} is a Brownian motion starting from 0 and independent of Fs.
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Proof. For any bounded and measurable function f, g, let Y ∈ Fs, then for any t ≥ 0,

Ex[f(Bt+s − Bs)g(Y )|Fs] = g(Y )Ex[f(Bt+s − Bs)|Fs]

= g(Y )Ex[f(Bt+s − Bs)|Bs]

= g(Y )Ex[f(Bt+s − Bs)],

take expectation on both sides, we have

Ex[f(Bt+s − Bs)g(Y )] = Ex[g(Y )]Ex[f(Bt+s − Bs)],

therefore Bt+s −Bs and Fs are independent, hence σ(Bt+s −Bs : t ≥ 0) and Fs are indepen-

dent.

6.4 Continuous stopping time

Definition 6.36. We call r.v. S a stopping time if for all t ≥ 0, {S < t} ∈ Ft.

Lemma 6.37. S is a stopping time if and only if for all t ≥ 0, {S ≤ t} ∈ Ft.

Proof. Suppose {S ≤ t} ∈ Ft, then since Ft is right continuous,

{S ≤ t} =

∞⋂
n=1

{S < t+
1

n
} ∈ Ft

Proposition 6.38. Let S, T be stopping times. Then

• S ∧ T

• S ∨ T

• S + T

are all stopping times.
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Proposition 6.39. Suppose {Tn : n ≥ 1} is a sequence of stopping times. We have

1. If Tn ↑ T , then T is a stopping time.

2. If Tn ↓ T , then T is a stopping time.

3. supn Tn and infn Tn are stopping times

4. lim supn Tn and lim infn Tn are stopping times

Proposition 6.40. Let A ⊆ R be a set. Define TA = inf{t ≥ 0 : Bt ∈ A}. Then

1. If A is an open set, TA is a stopping time

2. If A is a closed set, TA is a stopping time

3. If A is a countable union of closed sets, TA is a stopping time.

Proposition 6.41. If S ≤ T are both stopping times, then FS ⊆ FT .

Proposition 6.42. If Tn ↓ T are stopping times, then

FT =

∞⋂
n=1

FTn
.

Proposition 6.43. If S is a stopping time, then BS ∈ FS.

6.5 Strong Markov property

Theorem 6.44. Let (s, ω) 7→ Ys(ω) be bounded and B(R)×C measurable. If S is a stopping

time, then for any x ∈ R, on {S <∞},

Ex(YS ◦ θS |FS) = EBS
YS .
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6.6 Path properties

6.6.1 Zero set

Definition 6.45. Suppose ω is a path of Brownian motion, define the zero set as Zω = {t ≥

0 : Bt = 0}.

Proposition 6.46. For a.s. path ω ∈ Ω, Zω

1. has Lebesgue measure 0,

2. is closed and unbounded,

3. has no isolated point,

4. is dense in itself (perfect set),

5. is uncountable,

6. has Hausdorff dimension 1

2
.

Proof. 1.For any t > 0, Bt ∼ N (x, t) under Px, then

Ex(1{t∈Zω}) = Px(t ∈ Zω) = Px(Bt = 0) = 0,

therefore by Fubini’s theorem,

Ex[m(Zω)] = Ex[

∫ ∞

0

1{t∈Zω} dt] =
∫ ∞

0

Ex[1{t∈Zω}]dt = 0.

2. To prove a set is closed, we only need to show it contains all its limits. Let ω be a

continuous path (w.p.1.). For any sequence tn ∈ Zω, if tn → t, then by the continuity,

B(t) = lim
n→∞

B(tn) = 0,
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thus t ∈ Zω. Z unbounded is proved in Proposition 6.32.

3. Let T0 = inf{t > 0 : Bt = 0}. By Proposition 6.27, P0(T0 = 0) = 1. For any t > 0, let

Rt = inf{u > t : Bu = 0}, by Propostion 6.32, there exists n ≥ t (w.p.1.) s.t. Bn = 0, thus

Rt ≤ n < ∞ a.s. By the definition of inf, there is a sequence tn in Z ∩ (t,∞) s.t. tn → Rt，

then by continuity, Rt ∈ Z. Now applying the strong Markov property, we have

Ex[1{T0=0} ◦ θRt
|FRt

] = EB(Rt)(1{T0=0}) = P0(T0 = 0) = 1,

take expectation, we have for any t > 0,

Px(T0 ◦ θRt
= 0) = 1.

Let At = {ω : T0 ◦ θRt
> 0}, then At is null, thus the union over all rational numbers

A :=
⋃
t∈Q

At

is also null, which implies on Ω\A (w.p.1.), T0 ◦θRt
= 0 for all rational t. For path ω ∈ Ω\A,

take u ∈ Zω: if u = Rt for some rational t, u is obviously not isolated from the right; if

u 6= Rt for any rational t, there is a rational sequence tn s.t. tn ↑ u. Since tn ≤ Rtn < u, we

obtain a sequence Rtn in Zω s.t. Rtn → u. Therefore Zω is not isolated w.p.1.

4. Closed set without isolated points is dense in itself.

5. Perfect set is uncountable (See [6]).

6.

6.6.2 Hitting time and maximum

Definition 6.47. We say {Xt : t ≥ 0} has stationary increments if for any t, h ≥ 0, the

distribution of Xt+h −Xt only depends on h not t.
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Proposition 6.48. Let Ta = inf{t > 0 : Bt = a}, then under P0, {Ta, a ≥ 0} has stationary

independent increments.

Proof. 1. (stationary increments). If 0 < a < b, then

Tb ◦ θTa
= Tb − Ta.

Then for any bounded and measurable f , by strong Markov property and translation invari-

ance, we have

E0[f(Tb − Ta)|FTa
] = E[f(Tb ◦ θTa

)|FTa
]

= E[f(Tb) ◦ θTa
|FTa

]

= EB(Ta)[f(Tb)]

= Ea[f(Tb)]

= E0[f(Tb−a)],

thus

E0[f(Tb − Ta)] = E0[f(Tb−a)],

which implies Tb − Ta has the same distribution as Tb−a.

2. (independent increments) Let a0 < a1 < · · · < an, for any bounded and measurable
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functions f1, · · · , fn,

E0

[
n∏

i=1

fi(Tai − Tai−1)

]
= E0

[
E0

[
n∏

i=1

fi(Tai − Tai−1)
∣∣∣FTan−1

]]

= E0

[
n−1∏
i=1

fi(Tai − Tai−1)E0

[
fn(Tan − Tan−1)

∣∣∣FTan−1

]]

= E0

[
n−1∏
i=1

fi(Tai − Tai−1)E0 [fn(Tan − Tan−1)]

]

= E0

[
n−1∏
i=1

fi(Tai − Tai−1)

]
E0 [fn(Tan − Tan−1)] ,

by induction, we have

E0

[
n∏

i=1

fi(Tai − Tai−1)

]
=

n∏
i=1

E0 [fi(Tai − Tai−1)] ,

thus Tai − Ti−1, 1 ≤ i ≤ n are independent.

Theorem 6.49 (Reflection principle). Let a > 0, then

P0(Ta ≤ t) = 2P0(Bt ≥ a).

Proof. We can just modify the proof of Theorem 3.12. Fix t ≥ 0. Let S = inf{s ≤ t : Bs = a},

define inf∅ = ∞. Notice that

{S ≤ t} = {S <∞} = {Ta ≤ t}.

For s ≤ t, define

Ys = 1{Bt−s≥a},
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then Ys ◦ θs = 1{Bt≥a}. On {S <∞} = {S ≤ t},

YS ◦ θS(ω) = 1{Bt≥a}, (1)

and by the strong Markov property,

E0(YS ◦ θS |FS) = EBS
(YS). (2)

For s ≤ t,

Ea(Ys) = Pa(Bt−s ≥ a) =
1

2
,

thus on {S ≤ t}, BS = a,

EBS
(YS) =

1

2
.

Since {S ≤ t} ∈ FS, applying the definition of conditional expectation to (2), we have

E0(YS ◦ θS1{S≤t}) = E0[EBS
(YS)1{S≤t}] = E0[

1

2
1{S≤t}] =

1

2
P0(S ≤ t),

and by (1),

E0(YS ◦ θS1{S≤t}) = E0(1{Bt≥a}∩{S≤t}) = P0({Bt ≥ a} ∩ {S ≤ t}) = P0(Bt ≥ a),

since {Bt ≥ a} ⊆ {S ≤ t}.

Theorem 6.50 (Generalized reflection principle). Let a > 0, x ≤ a, then

P0(Ta ≤ t, Bt ≤ x) = P0(Bt ≥ 2a− x).

Proof. Let S = inf{s ≤ t : Bs = a}. Define inf∅ = ∞. Let Ys = 1{s≤t}1{Bt−s≤x}, Zs =
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1{s≤t}1{Bt−s≥2a−x}. By symmetry, we have

Ea(Ys) = Ea(Zs).

And

YS ◦ θS = 1{S≤t}1{Bt≤x}, ZS ◦ θS = 1{S≤t}1{Bt≥2a−x}.

By the strong Markov property, on {S ≤ t},

E0(YS ◦ θS |FS) = EBS
YS = EBS

ZS = E0(ZS ◦ θS |FS),

thus

E0(YS ◦ θS) = E0(ZS ◦ θS),

which is

P0(S ≤ t, Bt ≤ x) = P0(S ≤ t, Bt ≥ 2a− x). (1)

Since {S ≤ t} = {Ta ≤ t} and {Bt ≥ 2a− x)} ⊆ {S ≤ t}, (1) becomes

P0(Ta ≤ t, Bt ≤ x) = P0(Bt ≥ 2a− x).

Proposition 6.51 (Density of Ta). Let a > 0, then

P0(Ta ∈ dt) = a√
2πt3

e−
a2

2t 1{t≥0} dt.
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Proof. By Theorem 6.49,

P0(Ta ≤ t) = 2P0(Bt ≥ a)

=
2√
2πt

∫ ∞

a

e−x2/2t dx

=
2√
2πt

∫ 0

1/a2

e−1/2ut · (−u
−3/2

2
)du (let x = u−1/2)

=
1√
2πt

∫ 1/a2

0

e−1/2utu−3/2 du

= (2πt)−1/2

∫ t

0

e−a2/2s(
s

ta2
)−3/2 1

ta2
ds (let u =

s

ta2
)

=

∫ t

0

e−a2/2s(2πt · s
3

t3
)−1/2 · a

t
ds

=

∫ t

0

a√
2πs3

exp(−a
2

2s
)ds.

Remark. We have E0(Ta) = ∞.

Corollary 6.52 (Density of Tb − Ta). Let 0 ≤ a < b <∞, we have

P0(Tb − Ta ∈ dt) = b− a√
2πt3

e−
(b−a)2

2t 1{t≥0} dt.

Proof. From Proposition 6.48, Tb − Ta has the same distribution as Tb−a.

Definition 6.53. Define the maximum process of Brownian motion as Mt = max0≤s≤tBs.

Remark. Mt has some simple properties:

1. From Proposition 6.26, Mt > 0 for any t > 0.

2. t 7→Mt is increasing.

3. {Mt ≥ a} = {Ta ≤ t}.
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Corollary 6.54 (Density of Mt). For any t > 0,

P0(Mt ∈ da) = 2√
2πt

e−
a2

2t 1{a≥0} da.

Proof.

P0(Mt ≤ a) = 1− P0(Mt ≥ a) = 1− P0(Ta ≤ t) =
2√
2πt

∫ a

0

e−x2/2t dx.

Proposition 6.55. For any t > 0,

E0(Mt) =

√
2t

π
.

Proposition 6.56 (joint distribution of Mt and Bt).

f(Mt,Bt)(a, x) =
2(2a− x)√

2πt3
e−

(2a−x)2

2t 1{a≥0}1{a≥x}.

Proof. From Theorem 6.50.

Proposition 6.57. For a fixed t ≥ 0, Mt, Mt − Bt, and |Bt| have the same distribution.

Proof. 1. From Theorem 6.49,

P0(Mt ≥ a) = P0(Ta ≤ t) = 2P0(Bt ≥ a) = P0(|Bt| ≥ a),

so Mt and |Bt| has the same distribution.

2. Let U =Mt−Bt, V = Bt, i.e. Mt = U+V , Bt = V . We will compute the joint distribution

of (U, V ) from Proposition 6.56. The Jocobian is

J(a, x) =

1 −1

0 1

 ,
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|J(a, x)| = 1. Therefore the joint density of (U, V ) is

f(U,V )(u, v) =
f(Mt,Bt)(a, x)

|J(a, x)|
=

2(2u+ v)√
2πt3

e−
(2u+v)2

2t 1{u+v≥0}1{u≥0},

then the density of U is

fU (u) =

∫ ∞

−u

2(2u+ v)√
2πt3

e−
(2u+v)2

2t 1{u≥0} dv

= 1{u≥0}

∫ ∞

u2/2t

2(2u+ v)√
2πt3

e−z t

2u+ v
dz (let z = (2u+ v)2/2t)

= 1{u≥0}

∫ ∞

u2/2t

2√
2πt

e−z dz

=
2√
2πt

e−
u2

2t 1{u≥0},

which means U =Mt − Bt has the same distribution as Mt (Corollary 6.54).

6.6.3 Arcsine laws

There are three arcsine laws in Brownian motion. Based on previous results, we are already

able to prove two of them!

Lemma 6.58. Let T0 = inf{t > 0 : Bt = 0} and L = sup{t ≤ 1 : Bt = 0}. Then

P0(L ≤ t) =

∫ ∞

−∞
pt(0, y)Py(T0 > 1− t)dy.

Proof. Let Rt = {u > t : Bu = 0}, then {L ≤ t} = {Rt > 1}. Notice that T0 ◦ θt+ t = Rt, thus

1{T0>1−t} ◦ θt = 1{T0◦θt>1−t} = 1{Rt−t>1−t} = 1{L≤t}.

By Markov property, we have

E0[1{L≤t}|Ft] = E0[1{T0>1−t} ◦ θt|Ft] = EBt
(1{T0>1−t}) = PBt

(T0 > 1− t),
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take expectation on each side, we have

P0(L ≤ t) = E0[PBt
(T0 > 1− t)]

=

∫
Py(T0 > 1− t)P0(Bt ∈ dy)

=

∫
Py(T0 > 1− t)pt(0, y)dy.

Theorem 6.59 (Arcsine law). Let L = sup{t ∈ [0, 1] : Bt = 0}, then

P0(L ≤ t) =
2

π
arcsin(

√
t).
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Proof. By Lemma 6.58, we have

P0(L ≤ t) =

∫ ∞

−∞
pt(0, y)Py(T0 > 1− t)dy

=

∫ ∞

−∞
pt(0, y)P0(Ty > 1− t)dy

= 2

∫ ∞

0

pt(0, y)[1− P0(Ty ≤ 1− t)]dy

= 2

∫ ∞

0

e−y2/2t

√
2πt

·
∫ ∞

1−t

ye−y2/2s

√
2πs3

dsdy (by Proposition 6.51)

=
1

π

∫ ∞

0

∫ ∞

1−t

(ts3)−1/2y exp
(
−(t+ s)y2

2ts

)
dsdy

=
1

π

∫ ∞

1−t

(ts3)−1/2 ds
∫ ∞

0

exp
(
−(t+ s)y2

2ts

)
y dy (Fubini’s theorem)

=
1

2π

∫ ∞

1−t

(ts3)−1/2 ds
∫ ∞

0

exp
(
−(t+ s)u

2ts

)
du (let u = y2)

=
1

π

∫ ∞

1−t

(ts3)−1/2 ts

t+ s
ds

=
1

π

∫ ∞

1−t

t1/2s−1/2

t+ s
ds

=
1

π

∫ 0

1/
√
1−t

t1/2x

t+ 1/x2
· −2

x3
dx (let x = s−1/2)

=
2t1/2

π

∫ 1/
√
1−t

0

1

1 + tx2
dx

=
2

π
arctan(

√
t

1− t
) (since

∫
1

1 + tx2
dx =

1√
t

arctan(
√
tx) + C )

=
2

π
arcsin(

√
t).

Theorem 6.60 (Another arcsine law). Let M = arg maxt∈[0,1]Bt = inf{t ≥ 0 : Bt = M1},

then

P0(M ≤ t) =
2

π
arcsin(

√
t).
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Proof. By Proposition 6.57, Mt − Bt and |Bt| has the same distribution,

P0(L = sup{t ∈ [0, 1] : Bt = 0} ≤ s)

= P0(sup{t ∈ [0, 1] : |Bt| = 0} ≤ s)

= P0(sup{t ∈ [0, 1] :Mt − Bt = 0} ≤ s)

= P0(inf{t ≥ 0 : Bt =M1} ≤ s)

= P0(M ≤ s),

therefore M and L have the same distribution.

6.7 p-variation and quadratic variation

Definition 6.61. 1. We say Π = {t0, t1, · · · , tn} is a partition of the interval [0, T ] if

0 = t0 < t1 < · · · < tn = T.

2. The mesh (maximal interval length) of the partition Π is

|Π| = max
0≤k≤n−1

|tk+1 − tk|.

3. The p-variation of function f : [0, T ] → R over partition Π is

V p(f, [0, T ],Π) =

n∑
k=1

|f(tk)− f(tk−1)|p.

4. The p-variation of function f : [0, T ] → R is

V p(f, [0, T ]) = sup
Π

n−1∑
k=0

|f(tk+1)− f(tk)|p
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5. The quadratic variation of f : [0, T ] is

QV (f, [0, T ]) = lim
|Πm|→0

V 2(f, [0, T ],Πm),

where {Πm}∞m=1 is a sequence of partition s.t. their mesh shrinks to 0. Sometime we

denote quadratic variation as [f, f ](T ).

Remark. 1. Quadratic variation is a different concept from 2-variation, and

QV (f, [0, T ]) ≤ V 2(f, [0, T ]).

2. For the random process {Xt : t ≥ 0}, we can define p-variation over the partition Π for

each path ω ∈ Ω (the partition does not depend on ω), which is a random variable. And the

quadratic variation of Xt can be viewed as a limit (convergence in probability, L2 or a.s.) of

a sequence of random variables.

Theorem 6.62. QV (Bt, [0, T ]) = T in the sense of L2 limit.

Proof. Suppose Π = {0 = t0 < t1 < · · · < tn = T}. First, we have

E[V 2(Bt, [0, T ],Π)] = E

[
n−1∑
k=1

|Btk+1 − Btk |2
]
=

n−1∑
k=1

E[|Btk+1 − Btk |2] =
n−1∑
k=1

(tk+1 − tk) = T.
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And

Var[V 2(Bt, [0, T ],Π)] = Var
[
n−1∑
k=1

|Btk+1 − Btk |2
]

=

n−1∑
k=1

Var[|Btk+1 − Btk |2] (by independence)

=

n−1∑
k=1

Var[(tk+1 − tk)ξ
2
k] (here ξk ∼ N (0, 1))

= 2

n−1∑
k=1

(tk+1 − tk)
2 (Var(ξ2k) = 2)

≤ 2max
k

(tk+1 − tk)

n−1∑
k=1

(tk+1 − tk)

= 2|Π|T → 0,

as |Π| → 0. Therefore

E[|V 2(Bt, [0, T ],Π)− T |2] = Var[V 2(Bt, [0, T ],Π)] → 0, as |Π| → 0.

We will see two corollaries of Theorem 6.62.

Lemma 6.63. If f : [0, T ] → R is continuous, and Π = {0 = t0 < · · · < tn = T} is a partition

of [0, T ]. Then

max
0≤k≤n−1

|f(tk+1)− f(tk)| → 0,

as |Π| → 0.

Proof. Any continuous function is uniformly continuous on a closed interval, so for any ε > 0,

there is δ > 0 s.t. for any s, t ∈ [0, T ] with |s− t| < δ,

|f(s)− f(t)| < ε.
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So we can choose |Π| < δ, then |f(tk+1)− f(tk)| < ε for all k = 0, · · · , n− 1 and thus

max
k

|f(tk+1)− f(tk)| < ε,

i.e. its limit is 0 as |Π| → 0

Corollary 6.64. Let V p(Bt, [0, T ]) be the p-variation for the Brownian motion.

(1) If p > 2, V p(Bt, [0, T ]) <∞ a.s.

(2) If 0 < p < 2, V p(Bt, [0, T ]) = ∞ a.s.

Proof. (1)By the γ-Hölder continuity of Brownian motion for any γ ∈ (0, 1/2), there is C > 0

s.t.

|Bt − Bs| ≤ C|t− s|γ , ∀t, s ∈ [0, T ], a.s.

Therefore choose γ = 1/p < 1/2, we have w.p.1.

V p(B, [0, T ]) = sup
Π

n−1∑
k=0

|Btk+1 − Btk |p

≤ sup
Π

n−1∑
k=0

Cp|tk+1 − tk|γ·p

= Cp sup
Π

n−1∑
k=0

(tk+1 − tk)

= CpT <∞.

(2)Suppose there is an event A ∈ F s.t. P(A) > 0 and V p(B(ω), [0, 1]) < ∞ for all path
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ω ∈ A. For partition Π = {0 = t0 < · · · < tn = T},

V 2(Bt, [0, T ],Π) =

n−1∑
k=0

|Btk+1 − Btk |2

=

n−1∑
k=0

|Btk+1 − Btk |p|Btk+1 − Btk |2−p

≤ max
k

|Btk+1 − Btk |2−p
n−1∑
k=0

|Btk+1 − Btk |p

≤
(

max
k

|Btk+1 − Btk |
)2−p

· V p(B, [0, T ])

Since Bt is continuous for all paths in some set A0 with P(A0) = 1, by Lemma 6.63, we have

for any path ω ∈ A ∩ A0 (easy to check P(A ∩ A0) > 0)

lim
|Π|→0

V 2(B(ω), [0, T ],Π) = 0,

then

E[|V 2(B(ω), [0, T ],Π)−T |2] ≥ E[|V 2(B(ω), [0, T ],Π)−T |21A∩A0
] → E[1A∩A0

] = P(A∩A0) > 0,

thus

lim
|Π|→0

E[|V 2(B(ω), [0, T ],Π)− T |2] ≥ P(A ∩ A0) > 0,

which contradicts Theorem 6.62.

Corollary 6.65. Brownian motion is nowhere γ-Hölder continuous for γ > 1/2.

Proof. For a fixed interval [a, b] with a, b ∈ Q∩ [0,∞), suppose on a non-null set A ∈ F , Bt is

γ-Hölder continuous on [a, b] for γ > 1/2. Then for any partition Π = {a = t0 < · · · < tn = b}
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and for any path ω ∈ A,

V 2(B(ω), [a, b],Π) =

n−1∑
k=0

|Btk+1(ω)− Btk(ω)|2

≤ C2(ω)

n−1∑
k=0

|tk+1 − tk|2γ

≤ C2(ω)max
k

|tk+1 − tk|2γ−1
n−1∑
k=0

|tk+1 − tk|

= C2(ω)|Π|2γ−1(b− a) → 0,

as |Π| → 0, which contradicts Theorem 6.62 (By the same argument in Corollary 6.64).

Therefore for γ > 1/2 and any rational interval [a, b] ⊆ [0,∞),

P (Bt is γ-Hölder continuous on [a, b]) = 0,

then by the fact that countable union of null sets are still null, we have

P (Bt is γ-Hölder continuous on some rational interval [a, b] ⊆ [0,∞))

= P

 ⋃
a,b∈Q∩[0,∞),a<b

{Bt is γ-Hölder continuous on [a, b]}

 = 0.

If Bt is γ-Hölder continuous on some interval [a, b], then Bt is also γ-Hölder continuous on

any closed interval [c, d] ⊆ [a, b]. Therefore,

P (there is no interval [a, b] ⊆ [0,∞) s.t. Bt is γ-Hölder continuous on it)

= P ({Bt is γ-Hölder continuous on some real interval [a, b] ⊆ [0,∞)}c)

= P ({Bt is γ-Hölder continuous on some rational interval [a, b] ⊆ [0,∞)}c) = 1.
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Remark. This corollary provides a second proof of Theorem 6.16.

Almost sure convergence

In what condition, the quadratic variation of Brownian motion will be the almost sure limit?

Theorem 6.66. Let {Πm}∞m=1 be a sequence of partition of [0, T ] with |Πm| → 0. If

∞∑
m=1

|Πm| <∞,

then

V 2(B, [0, T ],Πm) → T, a.s. as |Πm| → 0.

Proof. Let V 2
m := V 2(Bt, [0, T ],Πm), by the proof of Theorem 6.62, we have

Var(V 2
m) ≤ 2|Πm|T,

then by Chebyshev’s inequality, for any ε > 0,

P(|V 2
m − T | > ε) ≤ Var(V 2

m)

ε2
=

2|Πm|T
ε2

.

Summing over m, we have
∞∑

m=1

P(|V 2
m − T | > ε) <∞,

by Borel-Cantelli Lemma, we have

P(|V 2
m − T | > ε, i.o.) = 0.

Let A := {|V 2
m − T | > ε, i.o.}, then for ω ∈ Ac (P(Ac) = 1), |V 2

m(ω) − T | > ε holds only for
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finitely many m, i.e. there is N > 0, s.t.

|V 2
m(ω)− T | ≤ ε, ∀m ≥ N,

which means V 2
m(ω) → T .

Theorem 6.67. Let {Πm}∞m=1 be a sequence of partition of [0, T ] with |Πm| → 0. If {Πm}∞m=1

is nested, i.e. Π1 ⊆ Π2 ⊆ · · · ⊆ Πm ⊆ · · · , then

V 2(B, [0, T ],Πm) → T, a.s. as |Πm| → 0.

6.8 Martingale

Theorem 6.68. Suppose Xt is a right continuous martingale w.r.t. a right continuous

filtration, T is a stopping time. If P(T ≤ k) = 1 for some k, then E(XT ) = E(X0).

Proposition 6.69. Suppose {Bt : t ≥ 0} is a Brownian motion starting from x, then

1. Bt

2. B2
t − t

3. eθBt−tθ2/2

are martingales w.r.t. Ft.

Proof. 1. By Markov property, for any 0 ≤ s ≤ t,

Ex(Bt|Fs) = Ex(Bt−s ◦ θs|Fs) = EBs
(Bt−s) = Bs,

the last equality holds because Bt−s(starting from Bs)∼ N (Bs, t− s).

2. Ex(B
2
t |Fs) = EBs

(B2
t−s) = VarBs

(Bt−s)+[EBs
(Bt−s)]

2 = t−s+B2
s , so Ex(B

2
t−t|Fs) = B2

s−t.
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3. Similarly, we have

Ex(e
θBt |Fs) = EBs

(eθBt−s) = eθBs+(t−s)θ2/2,

since for X ∼ N (µ, σ2)

E(eθX) =

∫ ∞

−∞
eθx

1√
2πσ

e−
(x−µ)2

2σ2 dx = eµθ+σ2θ2/2.

Theorem 6.70. If a < x < b, then

Px(Ta < Tb) =
b− x

b− a
.

Proof. Let T = Ta ∧ Tb, then by Proposition 6.31, T <∞ a.s. (Because w.p.1. Bm = ∞ and

Bn = ∞ for i.o. m,n ∈ Z+). Thus for any t ∈ [0,∞], T ∧ t <∞. Thus by Theorem 6.68 and

Proposition 6.69,

Ex(BT∧t) = Ex(B0) = x.

Since |BT∧t| ≤ |BT | ≤ |a|+ |b| <∞, by bounded convergence theorem,

Ex(BT ) = lim
t→∞

Ex(BT∧t) = x,

then

x = Ex(BT ) = aPx(BT = a) + bPx(BT = b) = aPx(Ta < Tb) + b[1− Px(Ta < Tb)],

i.e.

Px(Ta < Tb) =
b− x

b− a
.
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Proposition 6.71. Let a < 0 < b, T = inf{t ≥ 0 : Bt /∈ (a, b)}. Then

E0(T ) = −ab.

Proof. Consider bounded stopping time T ∧ t, since B2
t − t is a martingale,

E0(B
2
T∧t − T ∧ t) = E0(B

2
0 − 02) = 0,

i.e.

E0(B
2
T∧t) = E0(T ∧ t).

Since T ∧ t ↑ T , by the monotone convergence theorem,

lim
t→∞

E0(T ∧ t) = E0(T ).

By |B2
T∧t| ≤ a2 ∨ b2 <∞ and bounded convergence theorem, we have

lim
t→∞

E0(B
2
T∧t) = E0(B

2
T ),

thus

E0(T ) = E0(B
2
T )

= a2P0(BT = a) + b2P0(BT = b)

= a2P0(Ta < Tb) + b2[1− P0(Ta < Tb)]

= a2 · b

b− a
+ b2(1− b

b− a
)

= −ab.
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Proposition 6.72. Let a, λ > 0, Ta = inf{t ≥ 0 : Bt = a}, then

E0(e
−λTa) = e−a

√
2λ.

Proof. Since φ(t) = eθBt−tθ2/2 is a martingale,

E0(φ(Ta ∧ t)) = E0(φ(0)) = 1.

Bounded convergence theorem (BTa∧t ≤ a, so eBTa∧t ≤ ea) and monotone convergence theo-

rem (e(Ta∧t)θ2/2 ↑ eTaθ
2/2) give

E0(φ(Ta ∧ t)) = E0[e
θBTa∧t−(Ta∧t)θ2/2] → E0[e

θBTa−Taθ
2/2] = eθaE0[e

−Taθ
2/2],

therefore

E0(e
−Taθ

2/2) = e−θa,

taking θ = −
√
2λ gives the desired result.

Theorem 6.73. If u(t, x) is a polynomial in t and x satisfying

∂u

∂t
+

1

2

∂2u

∂x2
= 0,

then u(t, Bt) is a martingale.

Proposition 6.74. For a > 0, let T = inf{t ≥ 0 : Bt /∈ (−a, a)}. Then

1. BT and T are independent.

2. E0(T ) = a2.

3. E0(T
2) =

5a4

3
.

4. E0(T
3) =

61a6

15
.
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